
20
15

http://excel.fit.vutbr.cz

Parsers based on programmed grammars
Luboš Vanı́ček*

Abstract
Compilers that are used to translate programming languages are based on context-free grammars.
That means that they aren’t as strong as they could be. The power of compilers is the key problem
that this work is trying to solve. The main part of a compiler that is related to this problem is
a parser. And that is what this work is trying to improve. The problem is solved by creating a
special algorithm based on programmed grammars. The algorithm is than used in parsers. A
special application is created to verify if the solution works. This application allows users to test
the algorithm on user-created grammars and an input string of symbols. The created program is
tested with grammatical constructions that are known as context-sensitive. The results are really
successful and promising for the future development and application. This work could influence
constructions in programming languages and introduce brand new ones. It’s a good starting point
for stronger and better compilers. It could shorten the whole code and increase its clarity. Another
application of this work could be in translators that are translating natural languages, because those
languages are context-sensitive.

Keywords: programmed grammars — parsing — translators

Supplementary Material: N/A

*xvanic07@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
In today’s world, the programming languages are based
only on context-free grammars. That said, we cannot
use context-sensitive constructions in those languages.
The transition from current programming languages to
context-sensitive languages would be dramatic. This
could create an opportunity for better, shorter and more
understandable programming code. The idea could be
pushed even further and it may be applied to translators
of natural languages.

We tried to create a parser based on programmed
grammars. A parser is the main part of a compiler or a
translator. The basic difference between the compiler
and the translator is that the compiler is transforming
a code and turns it into a machine language. The
translator is transforming a code in some language to
another language of comparable level (e.g. from C to
Java). The parser’s behavior is based on an algorithm.
The algorithm finds out whether a user inputted string
belongs to the language generated by a user-created
programmed grammar. Another step was a creation of

a program that implements this algorithm and allows
users to test it properly.

There are no implemented solutions of compilers
or parsers that are based on programmed grammars
we know about. Parsers that are used in compilers for
today’s programming languages are based on context-
free grammars. That makes them much weaker than
programmed-grammar-based translators because they
could not translate context-sensitive constructions in
programming languages. Programmed grammars were
only discussed theoretically and no practical approach
has been published so far. My work takes this theoreti-
cal basics and uses them in parser application.

Programmed grammars are context-free grammars
that are extended by mathematical features allowing
the grammar to control the use of its rules. The algo-
rithm that takes user-created programmed grammars
and input string, uses the basic ideas of top-down pars-
ing and pushes them forward. If none of the current
rules can be applied on the left-most nonterminal than
this algorithm tries the same set of rules on another

http://excel.fit.vutbr.cz
mailto:xvanic07@stud.fit.vutbr.cz


nonterminals in the input string.
A parser based on programmed grammars was cre-

ated and tested. Not only did it work on context-free
languages but it was also able to recognize context-
sensitive constructions. Not all context-sensitive con-
structions were tested but that would be almost im-
possible to do so. This remains an open problem that
would need a mathematical proof. The program was
designed for theoretical languages so it can only han-
dle one-letter terminals and nonterminals. In the future
development this limitation could be eliminated, so
this parser would be fully applicable in compilers of
programming languages.

2. Expected knowledge
Formal languages are the basics for this work. Those
languages must be precisely mathematically defined.
For this paper we assume that the reader knows for-
mal languages on the level of context-free grammars.
The information about context-free languages can be
obtained from this publication [1]. The mathematical
background that is also needed for the understanding
of this paper can be read from this book [2]. We also
expect that the reader knows basics about parsing. If
not, the book [3] is a good starting point.

3. Programmed grammars
This paper is based on programmed grammars [4]. The
programmed grammar modifies a context-free gram-
mar by extending its every rule from a set P with a
set of rules Q. Symbols in the Q set determine which
rules from the set P can be used in a next derivation
step. A formal definition of programmed grammars is
as follows:

Definition 3.1. A programmed grammar is quintuplet:

G = (N,T,ψ,P,S),

where

• symbols N, T , ψ , S are defined as in a context-
free grammar;
• P ⊆ ψ ×N× (N ∪T )∗× 2ψ is a finite relation

called the set of rules. If (r,A,x,qr), (s,A,x,qs)∈
P, qr, qs ∈ Q, then (r,A,x,qr) = (s,A,x,qs).

Instead of (r,A,x,qr) ∈ P, we write r: A→ x,qr ∈
P.

Let V = N∪T be the total alphabet. The relation
of a direct derivation, symbolically denoted by⇒, is
defined over V ∗×ψ as follows: for (x1,r),(x2,s) ∈
V ∗×ψ , (x1,r)⇒ (x2,s) in G if and only if

x1 = yAz,
x2 = ywz,
r: A→ x,qr ∈ P,
s ∈ qr.

3.1 Generated language
The language generated by programmed grammars is
formally described in the following definition:

Definition 3.2.

L(G) = {w ∈ T ∗ | (S,r)⇒∗ (w,s); r,s ∈ ψ}

Generating the string w continues until the result
string is not terminal (consists only of terminal sym-
bols). If no rule from the set of Q from the last used
rule can be applied, then the derivation ends up unsuc-
cessfully.

Example 3.1. Let G = ({S, A, B, C}, {a, b, c,}, {r1,
r2, r3, r4, r5, r6, r7}, P, S) be a programmed grammar.
Let ε denote an empty string defined as in the book
[1]. The set P consists of the following rules:

r1 : S→ ABC,{r2,r5},
r2 : A→ aA,{r3},
r3 : B→ bB,{r4},
r4 : C→ cC,{r2,r5},
r5 : A→ ε,{r6},
r6 : B→ ε,{r7},
r7 : C→ ε,{r7}.

The listed example generates a language L(G) =
{anbncn | n ≥ 0}. An example of a string from L(G)
is aabbcc. This string can be obtained using the pro-
grammed grammar G this way:

(S,r1)
⇒ (ABC,r2)
⇒ (aABC,r3)
⇒ (aAbBC,r4)
⇒ (aAbBcC,r2)
⇒ (aaAbBcC,r3)
⇒ (aaAbbBcC,r4)
⇒ (aaAbbBccC,r5)
⇒ (aabbBccC,r6)
⇒ (aabbccC,r7)
⇒ (aabbcc,r7)

4. Parsing using programmed grammars
We use the basics of top-down parsing – the input string
is read from left to right. However, we cannot try to
apply all the rules from programmed grammar G on
the left-most nonterminal and see if any of them work.



Only rules from the set Q can be used. The rules from
the Q set are tried on all nonterminals in the input
string from the left to the right till any of them works.
If no such rule can be applied, the derivation is finished
unsuccessfully with the result that the input string does
not belong to the generated language of grammar G.
Detailed look on parsing programmed grammars is
written in algorithm 1. We were trying to make the
algorithm as simple as possible. For that we have
to made abstractions that is hiding some information.
One piece of information that disappeared from the
algorithm is the fact that the rules choosing is also
based on the terminals in input string.

5. Implementation

The goal of this paper is to create a parser that is based
on programmed grammars. As an implementation
language we have chosen C#. For applications like
parsers or translators it is not appropriate to make a
graphical user interface. Programmers do not usually
see an execution of compilers or translators. For this
reason, command line interface fits here the best.

The program needs two different inputs in order to
work. Firstly, it needs programmed grammar, whose
format is described in section 5.1. Secondly, the pro-
gram needs a user-defined input string. Finite automa-
ton that works as in the algorithm 1 decides whether
the input string belongs to the language generated by
the input grammar or not. The result is then written to
the console output.

5.1 Grammar format
Every set consists of comma-separated one-letter sym-
bols. On the first line there is a set of terminals, fol-
lowed by a set of nonterminals on the second line.
After the set of nonterminals there are grammar rules.
Every rule is written on a single line and begins with
a number. At the end of each rule there is a set of
the next rules that tells which rules can be used next.
Symbol e is used to simplify writing the grammar file,
it stands for an empty string. Every grammar file has
the following structure:

T: <set of terminals>
N: <set of nonterminals>
<number>: <left side>
-> <right side>,
{<set of next rules>}

An example file can be seen at the beginning when
executing the program on figure 1.

6. Testing
During application testing we focused on languages
that are not context-free. We tested many inputs from
these languages:

1. L1(G) = {anbncn | n≥ 0}
2. L2(G) = {ww | w ∈ {a,b}∗}
3. L3(G)= {wx |w∈{a,b}∗ and x= reversal(w)}
4. L4(G) = {ww | w ∈ {a,b}∗}
5. L5(G) = {aib jck | i, j,k ≥ 0 and i < j < k}
6. L6(G) = {aib jci | i, j ≥ 0 and j = i2}
7. L7(G) = {aib jc jdi | i, j ≥ 0 and j 6= i}
8. L8(G) = {waw | w ∈ {a,b}∗}
9. L9(G) = {0i10i10i10i | i≥ 1}

10. L10(G) = {wcv | w,v ∈ {a,b}∗ and w = vv}

Most of the languages are context-sensitive, but
L3(G) is a context-free one. Languages L4(G), L5(G),
. . . , L10(G) were taken from [5]. Hundreds of inputs
that could cause any problems were tried. Every tested
input was evaluated correctly by the application. Those
languages will not be listed because that would be too
long. As an example, see figure 1 for one nontrivial
tested string.

7. News for programming languages
we have already shown that the application can handle
two languages that are context-sensitive. For example
let’s look at the generated language L(G) mentioned in
example 3.1. This language can give us the following
construction in programming language:

x,y,z : int,bool,double : 1, true,2.3;

This is a definition of three variables on a single
line. If we admit, then any number of variables can be
used, than this is the context-sensitive language L(G)
we were talking about. The listed construction is just a
brief example of what could be used in new languages.

8. Conclusions
This paper is about creation of parsers that could parse
languages that are not context-free. Those parsers are
based on programmed grammars.

The results of this work are really promising. Hun-
dreds of inputs were tested for some mostly context-
sensitive languages.

The main contribution of this paper is an algo-
rithm that can handle context-free and some context-
sensitive grammars for theoretical languages. We do
not know how many context-sensitive grammars this



Algorithm 1 Algorithm for parsing with programmed grammars
1: procedure AUTOMATON

2: Initialization of the list of next rules so it contains only starting rule
3: while Some rule from next rules can be used do
4: Division of next rules into the rules with and without epsilon rules
5: Go through the nonterminals in the string from left to right and look for the first applicable rule

in non-epsilon rules (skip this step if the number of terminals in generated string equals the number of
terminals in input string)

6: if Not found then
7: Go through the nonterminals in the string from left to right and look for the first applicable rule

in epsilon rules
8: if Not found then
9: Input string rejected.

10: Use the found rule and update the list of next rules
11: Compare all of the terminals from the left sides of generated and input string that hasn’t been

compared yet (the comparison is performed only until the leftmost occurrence of a nonterminal)
12: if Mismatch then
13: Input string rejected.
14: Input string accepted
15: Print the used rules

algorithm can deal with exactly. That would require
mathematical verification of the application. Another
contribution is the design of an application that was
used for testing of user-defined strings.

This work can be taken as a starting point for trans-
lators that would be able to provide new grammati-
cal constructions for programming languages. This
is what will be done in the future. First, the parser
will be extended to be able to handle any terminals
and nonterminals (not just one-letter ones) and then a
translator that will compile languages with new gram-
matical constructions will be created.

Acknowledgements

I would like to thank Prof. RNDr. Alexander Meduna,
CSc. for giving necessary advices and guidance that
greatly helped me finalizing this work.

References
[1] Alexander Meduna. Automata and Languages:

Theory and Applications. Springer, 2000. ISBN:
1–85233–074–0.

[2] Joachimg Gathen and Jürgen Gerhard. Modern
Computer Algebra. Cambridge University Press,
2nd Edition, 2003. ISBN: 978–0521826464.

[3] Alexander Meduna. Elements of Compiler Design.
Auerbach Publications, 2008. ISBN: 978–1–4200–
6323–3.

[4] Alexander Meduna and Petr Zemek. Regulated
Grammars and Their Transformations. Brno Uni-
versity of Technology, 2010. ISBN: 978–80–214–
4203–0.

[5] Alexander Meduna. Formal Languages and Com-
putation: models and their application. CRC
Press, 2014. ISBN: 978–1–4665–1345–7.



Figure 1. Application that accepted an input that is not from context-free grammar


	Introduction
	Expected knowledge
	Programmed grammars
	Parsing using programmed grammars
	Implementation
	Testing
	News for programming languages
	Conclusions
	References

