2015

http://excel.fit.vutbr.cz

Issues related to parsing based on paraliel
communicating pushdown automata systems

Jakub Soustar*

Abstract

In this paper we consider the use of parallel communicating pushdown automata systems (PCPA),
that communicates their stacks on request, in parsing. We will present some issues that would
accompany their use, and also present some possible ways to deal with those issues. New
implicit transition mapping for pushdown automata, that are used as a components of a PCPA,
will be presented. This new property is aimed at dealing with the issues, that are caused by new
requirements which a PCPA poses on pushdown automata.

Keywords: parsing — parallel — communicating — pushdown — automata

Supplementary Material: Downloadable Code

*xsoust02@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

In [1] Erzsébet Csuhaj-Varju et al introduced parallel
communicating pushdown automata systems which
on request communicate their stacks. These systems
compose of several pushdown automata, each called a
component, that work in parallel to accept a language.
Because parallel communicating pushdown automata
systems can be considered as a accepting counter part
of generative parallel communicating grammar sys-
tems [2], they use similar communication strategy.
When a component is in need of an information from
another component (contents of its stack), it places an
appropriate query symbol on top of its stack. This ac-
tion forces a system to perform a communication step,
which results in to the query symbol being replaced
by the stack of a component that is associated to that
symbol.

Carlos Martin-Vide et al also introduced parallel
communicating finite automata systems that commu-
nicate via states in [3]. This paper will focus only
on parallel communicating automata systems whose
components are pushdown automata, because they are
able to accept languages that are not context-free, as
proved in [1].

Parallel communicating pushdown automata sys-
tems can be divided into four categories which were

defined in [1]:

1. RCPCPA for returning centralized parallel com-
municating pushdown automata systems.

2. RPCPA for returning parallel communicating
pushdown automata systems.

3. CPCPA for centralized parallel communicating
pushdown automata systems.

4. PCPA for non-returning non-centralized parallel
communicating pushdown automata systems.

When PCPA is returning, it means that after a com-
ponent sends its stack to another, its stack is reset to its
initial state. Non-returning PCPA maintains contents
of its stack after communication. Centralized PCPA
is a system where only one dedicated component can
request communication as opposed to non-centralized
systems where any component can request communi-
cation.

There are several properties of PCPA, that are of
interest for parsing. One is their increased accepting
power — we can use these systems to accept larger
family of languages. Also, following their name, these
systems are already defined as parallel — it’s opening
opportunities to use this parallelism in the process of
parsing to, for example, increase their performance.

Currently, most of the programming languages are
defined as context-free — mainly because they can be

http://excel.fit.vutbr.cz
https://github.com/J4kubS/IBP
mailto:xsoust02@stud.fit.vutbr.cz

easily analyzed, and formal models for generating and
accepting such languages are well documented. It is
also quite common that they contain syntactical struc-
tures, that are not entirely context-free, for example
multiple assignment (a, b = 1, 2). These struc-
tures are usually handled on multiple levels of a com-
piler or an interpreter, such as syntactic and semantic
analysis. We propose that PCPA do not replace the
currently used models in parsing, but that they are used
together — creating heterogeneous systems capable of
handling cases like the multiple assignment.

We assume that the reader is familiar with basic con-
cepts of formal languages and automata theory, partic-
ularly notions of grammars and pushdown automata.
More details can be found in [4].

Firstly, we will define parallel communicating push-
down automata systems as introduced in [1].

A parallel communicating pushdown automata sys-
tem of degree n is a construct

A= (V,AA,A,... Ay K),
where

e V is the input alphabet,

e A is the alphabet of pushdown symbols,

e foreach 1 <i<n,A;=(0;V,A, fi,qi,Zi,F,) is
a pushdown automaton with set of states Qj;,
the initial state ¢; € Q;, the alphabet of input
symbols V, the alphabet of pushdown symbols
A, the initial contents of stack Z; € A, the set of
final states F; C Q;, and the transition mapping
fi from Q; x VU {e} x A into the finite subsets
of Q; x A*,

e K C {K,K3,...,K,} C A is the set of query
symbols.

The automata A1,A,, ..., A, are called components
of the system A.

If there exists only one component A;,1 <i <n,
such that (r, @) € f; (¢,a,A) with o € A*, |at|x > 0, for
some r,q € Q;,a € VU{e}, A € A, then the system is
said to be centralized and A; is said to be master of the
system. For the sake of simplicity, whenever a system
is centralized its master is the first component.

Configuration of parallel communicating pushdown
automata system A is a 3n-tuple

(Sl,X[,al,SZ,XZ,aZ,--.,Sn,xn,(xn)
where for 1 <i<n,

e 5; € Q; is the current state of the component A;,

e x; € V* is the remaining part of the input word
which has not yet been read by A;,

e o; € A* is the stack of component A;, its first
symbol being the topmost symbol.

There are two variants of transitions on the set of
configurations of .4, defined in the following way:

1. (S],X],B](X],Sz,Xz,BzOCz,...,Sn,xn,BnOCn)
H (p17y1>ﬁ17p27y23B27"'7pnayn>ﬁn)’WhereBi6
A, oy, Bi € A*, 1 < i< n,iff one of the following
two conditions hold:

(a) KN{By,By,...,B,} =0andx; = a;y;,a; €
VU{S}?(phﬁi/) Efl'(shaivBl')?ﬁi:ﬁi/aial <
i<n,

(b) e foralli, 1 <i<nsuchthat B; =Kj

and Bji §é K,] >1, Bi :Bj,.ajl.a,-,

e for all other r, 1 <r <n, B, = B,q,,
and

oy, =x,p =5, forallt, 1 <t <n.

2. (S] , X1 ,B](X],Sz,Xz,BzOlz, e ,sn,xn,Bna,,)
Fr (P1Y1, Brs P2,Y2, B2+ Py Yn, Ba), Where B; €
A, a;, B; € A*, 1 <i < n, iff one of the following
two conditions hold:

(@) KN{B1,Ba,...,B,} =0and x; = a;y;,a; €
VU{E}) (pi’ﬁi/) Efi(si’aivBi) 7ﬁi :ﬁi/ah 1<
i<n,

(b) e foralli, 1 <i<nsuchthat B; = K,

andle. ¢K,] >1, ﬁ,’ :le.OCjiOCi, and

Bji=Zj,
e for all other r, 1 <r <n, B, =B,q,,
and

oy, =x, pr =5y, foralle, 1 <t <n.

Whenever a component has a query symbol on
top of its stack, communication must take place. Dur-
ing communication no regular transitions can be per-
formed. Before stack can be communicated, its top-
most symbol must not be a query symbol. This can
lead to a circular query which will block further action
of the system.

After communication, the stack contents of the
sending component remains unchanged in the case of
relation -, whereas it becomes initial pushdown sym-
bol in the case of relation I-,. A parallel communicat-
ing pushdown automata system whose computations
are based on relation I is said to be non-returning; if
its computations are based on relation I, it is said to
be returning. The language accepted by parallel com-
municating pushdown automata system A is defined

as

L(A)={xeV*(q1,%,2Z1,. -, qn,X,Zy) F*

(51,€,01,..., 80, &,00,),85; € F;,1 <i<n},
L(A) = {XG V*‘ (q17x7zla"'7qn7x7zn) l_:f
(51,€,00,..., 80, &,)8 € F;,1 <i<n},

where -* and -} denote the reflexive and transitive
closure of - and I, respectively.
We use the following notations

RCPCPA(n) for returning centralized parallel com-
municating pushdown automata systems of de-
gree n,

RPCPA(n) for returning parallel communicating push-
down automata systems of degree n,

CPCPA(n) for centralized parallel communicating
pushdown automata systems of degree n,

PCPA(n) for parallel communicating pushdown au-
tomata systems of degree n.

In this section, we will discuss some issues that would
be introduced into the process of parsing by using the
parallel communicating pushdown automata systems.
Also, the notations card(M), meaning the number of
elements of the set M, and |M|g, meaning the number
of occurrences of the element E in the set M, will be
used. At first, we will look at the way the amount of
non-determinism in systems components affects the
whole system. After that, we will focus on the differ-
ence between regular pushdown automata and those
used as a components in a PCPA. More specifically,
we will focus on differences in the ways they reach
their accepting state, and on changes in their behavior
after they reach it.

3.1 General non-determinism in components
of a PCPA
Without any further restrictions, any component can
enter a configuration (s,x,a), s € Q, x € V¥, o0 € A*
such that card (f (s,x,a)) > 1. That is, it can perform
more than one transition from its current configuration.
Effect of this issue is even more heightened in
situations, where it occurs in more than one component
of a PCPA. In fact, the number of configurations a
pcpa(n) can transition into, is equal to

ﬁcard (fi (siyxi, 04))
i=0

and the set of all possible configurations system can
enter is given by

fl (S],Xl,al) X f2 (527x27a2) XX fn (snaxnaan> .

As we can see, even small amount of non-determinism

in the systems components can have serious impact on
whole system. When designing some PCPA, one must
have in mind this issue, as it could possibly render the
whole system too inefficient for any practical use.

3.2 Accepting state of a PCPA and accepting
states of its components

A regular pushdown automaton and a component of a
PCPA treat the input word differently. Regular push-
down automaton will continue reading the input word
and either accept it or reject it — the input word either
belongs to the language accepted by the pushdown
automaton or it does not.

As we can see from the definition of a PCPA in 2,
each of its components has to accept the input word,
otherwise the PCPA as a whole can not accept it. But
unlike the regular pushdown automaton, a component
of a PCPA can use only portions of the input word to
actually perform some computations, while the rest of
the input word can serve as a synchronization mecha-
nism. This is the reason behind the accepting power of
a PCPA - its components analyze the input word, each
one in its own way, and then they together produce a
result.

Now, because each component of a PCPA can work
differently to the others, it also means that they all can
enter their accepting states after a different amount of
performed transitions. But at that point, where regular
pushdown automaton would successfully accept the
input word and halt, a component must be able to
continue working. If a component was to reach its
accepting state, and it would not be able to perform any
transition from such configuration, it could wrongfully
cause the PCPA to reject the input word.

Reader can imagine that this issue can be actually
quite easily solved using &-transitions — a component
could enter an infinite cycle where it would transi-
tion into the same configuration. This would cause
the component to remain in its accepting state, and it
would also remove the risk of unintentionally causing
a system to reject the input word.

While there is formally nothing wrong with this so-
lution, adding a new transition, especially &-transition,
could possibly introduce additional non-determinism
into the system. Such situation could complicate the
process of parsing, as we presented in 3.1. This issue
also applies to every component of every PCPA, show-
ing a limitation in the definition of pushdown automata
in the context of parallel communicating pushdown
automata systems.

This section will present some possible solutions to
the issues presented in 3. We will start with the gen-
eral non-determinism in a PCPA and present two main
approaches to this issue. At the end of this section,
new type of transition for components of parallel com-
municating pushdown automata systems will be pre-
sented. This new transition allows the component to
handle issues shown in 3.2, without posing additional
requirements on its design or the threat of introducing
non-determinism.

4.1 Dealing with general non-determinism in
aPCPA

This issue can be dealt with by taking two approaches.

System can either embrace non-determinism, and thus

increase its accepting power at the expense of perfor-

mance, or it can treat it as erroneous state.

4.1.1 Embracing non-determinism

Taking this approach can greatly increase the accepting
power of a system. In fact, it was proven in [1], that a
PCPA (n) equals the family of recursively enumerable
languages. For practical use, such accepting power
could be unnecessarily strong. On the other hand, it
could also allow the system to accept languages like

{xx|xev*t}

{aznlnzl}.

Decision whether to use this increased power or
not, should be based upon analyzing the intended use
of such system. The impact of non-determinism on
the performance of a PCPA will grow with the length
of the input word. When mainly analyzing relatively
small strings, it’s likely that the benefit, in form of the
increased accepting power, would outweigh the per-
formance cost. Also, for some concrete systems, ad-
ditional heuristics could be used to reduce the amount
of possible configurations that the system could enter.

The demonstration application that is a part of this
paper, is mainly designed as a proof of concept. The
application simulates the work of a PCPA defined by
the user. There are no specific restrictions for those
systems, though complicated or non-deterministic sys-
tems can cause serious performance issues.

or

4.1.2 Discarding non-determinism
Let A= (Q,V,A, f,q,Z,F) be a pushdown automaton.
If card (f (s,x,ct)) < 1 for each s € Q, x € VU{¢e},

a € A, A is said to be a deterministic pushdown au-
tomaton.

By posing requirement that each component of
a system is deterministic, we can easily see that the
whole system would be also deterministic. For any
configuration, there would be either none or one possi-
ble configuration that the system could transition into.

4.2 Introducing a new implicit transition map-
ping for components of a PCPA

Let A = (V,AAy,...,A,,K) be a PCPA(n) and let

Ai = (0i,V,A, fi,qi,Z;, F;) be a component i,1 <i<n

of A. We define this new property for the components

of A as

Definition 1. Let (s;,a;x;,B;;), where s; € Q;,a; €
VU{e},xi € V¥ B, € Aoy € A", be a configuration
of A;. Then f; implicitly contains transition mapping
fi(si,ai,B;) = {(s;, B;;) }, iff all the following condi-
tions hold:

[] Bl' gé K,

e (s;,a;x;,B;0;) is a configuration, in which A; is
in an accepting state, and

[] fz (S,‘,Cli,Bi) =0.

This implicit transition mapping allows the compo-
nent of a PCPA to remain in a configuration in which
the component is also in an accepting state, allowing
the component to reach its accepting state and giving
it a ability to remain in such state. Reader can see
that this transition acts as the NOP instruction known
from assembly languages. Main benefit of this type of
transition is that while it acts the same as the transition
mapping f; (s;,€,04) = {(s;,04) }, it does so with lower
priority — this transition can only be performed if no
other can.

Use of this new property has two main benefits.
It simplifies the design of a PCPAs components, by
removing the need to explicitly specify transitions, that
would allow the component to work even after it has
logically fulfilled its function. Removal of those tran-
sitions can also reduce the amount of non-determinism
in the component, acting as an additional benefit.

We have discussed some of the issues that would par-
allel communicating pushdown automata systems in-
troduce into the process of parsing, and also looked at
how these issues could be approached. New implicit
transition mapping for the components of a PCPA was
introduced as a solution for the difference between
pushdown automata that are part of a PCPA, and those
that are not.

We will end with a few ideas to investigate in fu-
ture. Would it be possible to enhance a PCPA with a
additional control mechanism, that would be able to
reduce the amount of possible configurations, that a
non-deterministic PCPA could enter? Also, at the mo-
ment, the system must perform transition as a whole,
so that the communication step can be performed prop-
erly if needed. Would it be possible to detect the points
where communication takes place in advance? This
would allow the components to work more indepen-
dently by relaxing the requirement to wait for others
after each transition.

[1] Erzsébet Csuhaj-Varji, Carlos Martin-Vide, Vic-
tor Mitrana, and Gyorgy Vaszil. Parallel commu-
nicating pushdown automata systems. Interna-
tional Journal of Foundations of Computer Sci-

ence, 11(04):631-650, 2000.

[2] Gh. Paun and L. Santean. Parallel communi-
cating grammar systems: the regular case. An.
Univ. Bucuresti, Ser. Matem.-Inform., 38(2):55—
63, 1989.

[3] Carlos Martin-Vide, Alexandru Mateescu, and
Victor Mitrana. Parallel finite automata systems
communicating by states. International Journal
of Foundations of Computer Science, 13(05):733—
749, 2002.

[4] Grzegorz Rozenberg and Arto Salomaa, editors.
Handbook of Formal Languages, volume 1-3.
Springer-Verlag Berlin, 1997.

	Introduction
	Background
	Some PCPA related issues for parsing
	Handling the previously presented issues
	Conclusions
	References

