
20
15

http://excel.fit.vutbr.cz

Communication platform for management and
control of robots
Andrej Tichý

Abstract
Nowadays, there are no cheap and easy robot management systems which would be able to
provide fast and secure communication over a public network. This work deals with creating a
communication platform which enables secure global communication between a client and a robot
and ensures management of robots. To solve the problem I have designed a communication layer
based on client-server architecture allowing non-ros applications to communicate with platforms
based on ROS, using a specified protocol. When solving the problem I divided the application
into three different subsections: a web client, a client for the robot and a server. The result of this
work is the presentation of a functional system that can globally manage and communicate with
the selected robot. The system provides an overview of the current status of selected robots. In
already existing solutions I mentioned above the robot acts as a server in architecture, which is not
an appropriate solution in practice. The main contribution of this work consists in exchanging roles,
where robot acts as a client. Therefore it is possible to provide the robot with cheap computing
power of server and thus to save valuable resources of the robot. One another benefit of this work is
constructing a tool that allows global communication between the client and the robot and ensures
the safety of this communication. It also represents the interface between non-ros applications and
robots based on the ros platform. It provides advanced management of robots and clients, solves
client’s access rights to robots and helps to increase the efficiency of the robot.

Keywords: Remote control robot — Global communication — Robot Operating System

Supplementary Material: Video is not here yet — Code

*xtichy09@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

http://excel.fit.vutbr.cz
https://github.com/xtichy09/Remote-robots-ROBOFIT.git
mailto:tichyand@gmail.com


1. Introduction
At this time when the need of having robots is increas-
ing and there are tens of robots in many companies,
a problem with confuseddnes a small efficiency of
robots using occurs. The aim of the application beeing
deveoped is to streamline working with robots and to
give the user quick and easy overview of the status
of individual robots. This will ultimately have an im-
pact on reducing the cost spent on running of robots.
Automating production lines, introduction of robotic
employees or just purchasing one single robot are a
quite big investment, so it is important that the robot is
beeing used efficiently in order to arrange the shortest
payback period for its owner.

For example the well known company Amazon
completed the construction of its revolutionary ware-
house “Amazon warehouse robots” [1], where they
use around 15,000 robots for sorting, transfering and
packaging of shipments. Using such a large number of
robots it is necessary to have an automatized system
of management and control.

According to the research [2] a robotic time comes,
when intelligent robots will be common part of our ev-
eryday life. Industrial countries face the problem of
ageing population, which is caused by the fact, that
young families prefer career to children. One possi-
ble solution could be a robotic household providing
babysitting or guarding property based on remote man-
agement and control.

The aim of my work was to design and implement

Figure 1. Reactor cycle, non-blocking waiting in
usage of multiple sockets

a system, that will provide fast and secure communi-
cation between the web client and the robot as well as
an overview of selected robots over a public network.
It also should represent the interface between non-ros
applications and systems based on ROS [3]. The prob-
lem is that there is no cheap and simple solution of
the problem at this time, which could provide fast and
secure communication over a public network.

There are only partial solutions or specialized sys-
tems, implementation and installation of which exceed
the costs necessary for running my application. When
dealing with the problem, I came across some inter-
esting solutions that are technologically similar to my
results or address a special part of the defined prob-
lem. All of them are beeing developed by a group of
robotwebtools. [4]

Rosbridge 2.1 is a tool developed for communi-
cation between systems based on ROS and non-ros
applications. MJPEG server 2.2 is a tool that pro-
vides transmission of video from ros-base system and
publishes it in a form of a video stream. Robot manage-
ment system 2.3 is a system that provides a graphical
user’s interface for managing robots by using tools
mentioned above. Using of these tools we get a com-
prehensive system for managing robots, which has
great use in a local network. The aim of my work
wasn’t to overcome the quality of control offered by
the RMS, but forward the idea of robots management
a step further.

One problems of the existing solutions is serving
the robot as a server in the architecture, which brings
along several disadvantages. Such robots waste their
limited resources on the server overhead. If we wanted
to perform communication over a public network, the
robot would need to have a public IP address which
might be a problem when we are thinking of the enor-
mous number of robots in practice. Most existing
solutions is designed for communication in a local
network.

The biggest advantages of my solution compared
to existing solutions is an exchange in roles the robot
plays. In my architecture a robot represents a client
that connects to the server 3, which implicates several
positive facts. First of all my robot saves it expensive,
limited resources and it can let the server solve diffi-
cult calculations, whose resources are much cheaper.
Therefore the robot can be considered ”only” as a data
collector, which publishes data to the server, the brain.
Another advantage of my solution is that the robot can
communicate globally across the Internet without los-
ing time spent on direction. Another significant benefit
of my application is in the area of research where the



application allows you to process and distribute data
to various non-ros platforms easily and thus to extend
the spectrum of possible experimentation and using of
robotic platforms.

2. Theory

2.1 Rosbridge
Rosbridge is one of many robotic tools which are bee-
ing developed by a group called Robot Web Tools [4].

The basis of the robotic platform ROS [3] is roscore
which is able to publish individual robot’s sources to
various local ports. In case we want to connect to these
sources, we need to know for what the individual ports
are. This could be difficult due to the dynamic port
allocation. From a logical point of view of the Internet
and client-server topology robot behaves as a server
in this connection, and it often has no allocated static
global IP address. Thus the possibility of our com-
munication is limited to a local network. The aim of
rosbridge [5] tools is to fix the problem of dynamic
port allocation to robot’s sources from roscore. There-
fore Rosbridge unifies all the ports assigned by roscore,
manages them and integrates them into a single port,
which acts as a single point of access to the resources
of the robot. This port can also be used in a local
network with no-ros applications to communicate by
using rosbridge protocol. [6]

Rosbridge is a quality tool that can be used for com-
munication within the local network. When commu-
nicating it uses authentication and the communication
can take place via https - therefore it contains the ba-
sic elements of security. When transferring resources
from the robot, rosbridge provides many opportunities
how to work with the data and it also allows you to
work with a broad spectrum of data. One of these
data is also video stream, that can be transmitted using
rosbridge. However the transfer of the video stream is
very unoptimized and slow in rosbridge.

Rosbridge is based on client-server architecture,
the robot serves as a server. This distribution of archi-
tecture reveals a major problem. If the communication
should take place globally, robot would need to have
a public IP address. This is not a big problem for one
robot, but if there were more robots, a problem with the
lack of public IP addresses and increasing operating
costs occurs. One another aspect is the unnecessary
use of robot’s resources which are considerably more
expensive than the resources of the remote server. One
another aspect is the view of safety, outlined in chapter
4.3.

2.2 Mjpeg server
Mjpeg Server [7] belongs to a group of tools that are
beeing developed by group Robot Web Tools [4] like
rosbridge, but because the transmission of video over
rosbridge is still not optimal, the tool mjpeg server was
implemented. Mjpeg server is optimized for transmit-
ting data stream from a robot into a non-ros applica-
tions. The most commonly used data streams include
video, but there is also the possibility of transmitting
other sources of similar type. When transferring video
stream MJPEG server allows a wide range of options
to edit video ”on the fly”.

Significant deficiency like in rosbridge is that the
application is designed only for the local communica-
tion, and thus it does not allow the global transmission
of the data stream without any external intervention.

2.3 Robot Management System
RMS [8] is a tool for managing groups of robots based
on the ros platform. RMS was developed by a group
of Robot Web Tool. It is basically a tool that presents a
graphical user interface and the background that allows
you to manage robots. RMS uses the aforementioned
tools and rosbridge 2.1 mjpegserver 2.2 to communi-
cate with the robot and to video transmission. RMS
enables authentication of user and access control. It
contains graphical user interface for managing content
and robots, remote control of robots and other gadgets.

2.4 Twisted framework
Twisted [9] is an event-driven framework written in
Python and licensed as open source. It supports dif-
ferent types of protocols. Particular interest for us are
TCP, HTTP Websocket. Twisted framework is based
on an event driven programming, which means that the
user of the framework writes a brief callback function.
The main reason why I chose twisted framework is that
it can listen actively to a greater number of sockets and
sockets can be of various kind. The tool that makes
this possible is called reactor and its principle is shown
in a picture. 1.

3. Architecture of the system
The aim of my work was to create a system that will
enable global and secure communication between the
robot and the client, it will provide different levels of
permissions and advanced management of users and
robots. For this purpose, I have designed a communica-
tion layer 2 based on client-server architecture, which
will allow non-ros applications to communicate with
ROS [3] based platforms, using the specified protocol.
[10]



Figure 2. System diagram

Communication layer can be divided into four ba-
sic parts. Each individual layer solves a specific task
and from a spatial perspective, each subsection of ap-
plications can run on independent and globally remote
machines.

3.1 Server
The main part of the system is a server whose activi-
ties are divided into three subprocesses. 3 The main
thread handles registration requests from clients, col-
lects and distributes meta-data regarding clients and
robots, deals with authentication and authorization of
the client and the robot, handles rights and launching
the communication channels between the client and
the robot. This thread is always released only once
by the machine, and persists throughout the operation
of the server. The control cycle of the main thread
is based on twisted framework [9] and it operates on
reactor 1.

Communication thread represents a proxy server
between the client and the robot completed with the
management and control of communication. The pro-
posed protocol [10] ensures the communication be-
tween the web client and communication thread where
messages are transmitted via websockets. Communica-
tion between the communication thread and the robot
is designed according to the same protocol and mes-
sages are transmitted using TCP/IP sockets. Messages
for the robot are based on rosbridge [6] and are saved
in JSON format.

The last part of the server is a thread that provides
video stream. It requires HTTP/GET header [11] with
precisely specified node and parameters necessary for
proseccing the video from the client. In the next step
the server sends this header to the process ensuring
distribution of the video stream and its edit on the
robot.

3.2 Web client
The logic of the communication layer is that it connects
non-ros application with a robot based on ros platform.
As a non-ros applications we can generally consider
any application in which it is possible to create a graph-
ical user interface, while this platform has the ability
to communicate with the server using web sockets or
TCP/IP protocol. I implemented a GUI using a web
interface, which was used in the library roslib [12],
using rosbridge protocol [6]. The application uses my
proposed protocol [10] to communicate with different
parts of the server described above. Messages for the
robot are constructed using prescription of rosbridge
protocol and formatted in JSON notation.

3.3 Robot client
This part of the system is the interface between roscore
and communication layer. Its aim is to understand and
realize the message received from the communication
thread. It is divided into three basic threads 3. The
main thread collects meta-data regarding the robot and
registers the robot into the system. Based on the re-
quest from the server this thread initiates startup of two
other threads. Client’s communication thread based on
the input parameters connects to the communication
server thread. Video-stream thread like communica-
tion thread connects to the server video-stream thread
on the basis of information received from the server.
This step creates a bridge between the server and the
robot, which allows global communication and video
transmission between them.

4. Communication and working
In this part of article I will explain the process of
initiation communication between the robot and the
client, how the registration of the robot and the client
proceed and how to transmit meta-data.

4.1 Working
The first part which needs to run is the server pro-
cess. As a server I consider a sufficiently powerful
infrastructure that will be able to calculate even com-
plex algorithms with cubic complexity O (N3) in a
reasonable time. Another requirement is the stability,
availability, speed and low response of the network
connection. The process does not use complex data
structures, and does not store any large amount of
meta-data. Therefore, if the system will be used at less
than 5000 robots, it is not necessary to solve its spatial
complexity. Scalability is directly proportional to the
available performance of the infrastructure on which
the process is running. Theoretically the server is built



Figure 3

to operate infinite number of robots. Server must have
allocated its own public IP address and the possibility
to book its own port which is predefined for the 9090.

The second part is the robot, which must be based
on a robotic platform ROS [3]. The robot must have
installed the robot client 3.3 and each robot must gen-
erate its own ID and login, which should be used to log
into the system. User of robot should ensure that the
client process will have availavble enough processor’s
time and enough baud rate. The baud rate is directly
proportional to the amount of data that are distributed
to server 3.1. Particularly critical is the stability and
response of data transfer between the robot and the
server. At high response rates there is a problem with
the actuality of available data at the web client 3.2,
which can pose a significant problem especially if we
want to control the robot using the video. In cases of
connection instability it response can increase dispro-
portionately or ot it can lead to a critical error and then
to logoff the robot from the server.

The last part of the system is the web client 3.2,
which generally can run on a variety of devices al-
lowing the graphical user interface and supporting
javascript. We assume a sufficiently fast and stable
network connection.

4.2 Communication protocol
On condition that all the requirements that are men-
tioned in chapter 4.1 are fulfilled, communication pro-
tocol platform can continue.

Registration of robot begins by starting robot client
with input parameters that are ID, login, IP address of
the server and the port to which the server listens to.
Starting robot client will be performed automatically
while the robotic platform is beeing starting. A mes-
sage based on the protocol is created [10]. Message
contains meta-data regarding the robot.

After getting the registration requirement the server
checks if the robot’s metadata match with metadata
stored in the database, especially a login ID. After
a successful verification, the server creates an object
of robot type and inserts it into the list of currently
registered robots and sets its status parameters.

Login web client runs via the login gateway based
on login and password. When logging in, the client
displays the current list of robots for which it currently
has access and robot’s status parameters. It also creates
a registration message based on protocol, which is sent
to the server 3.1.

When server receives a registration message from
the client it creates an object of type webclient, set its
status parameters and inserts it into the list of currently
connected clients.

If the robot is not working currently, and the user
has permission to work with this robot, the client can
initiate communication with the robot. The web client
creates a message based on protocol [10] and sends it
to the server 3.1. The server evaluates the parameters
of the message and after successful testing, it creates a
communication thread.

After successfull establishing a communication
thread, the communication thread itself logs on the
main thread of the server 3.1 and assignes to one of
the state parameters of the robot. After registration
of thread it needs to send a message with meta-data
regarding the communication thread to both of clients.

After receiving the message containing meta-data
regarding the communication thread, web client redi-
rects itself to work graphical user interface and regis-
ters in the communication thread 3.1.

After receiving message containing meta-data re-
garding the communication thread, robot client creates
a communications thread 3.1 and registers it in the
communication thread on the server 3.1. After these



Figure 4. Visualization of levels of security

operations the system is ready for the communication
between the web client 3.2 and the robot 3.3.

Initiation of video stream is based on the same prin-
ciple as the launch of communication threads but with
the difference that different metainformation and mes-
sages are used and video is displayed in the HTML5
tag <video>.

For more detailed specification of protocol and
messages see technical documentation for communi-
cation platform. [10]

4.3 Safety communication
When implementing the application I’ve tried to make
the communication between elements of the system as
safe as possible in accordance with safety standards.

One commonly used solution dealing with the
problem and using the rosbridge server [5] is that a
robot is considered as server 3.1 and opens one of its
ports to a client 3.2 interested in communication with
the robot. In such architecture everyone, who knows
on which port the server is running, can connect and
communicate with the robot. Therefore, I consider
such a solution as relatively dangerous for commercial
use. In order to solve this problem and also the prob-
lem of the global communication it was necessary to
insert layer between the client 3.2 and the robot 3.3.
The layer manages the access rights of users to the
robot.

For this layer we can considered the main thread
of server 3. This thread has the task to receive authenti-
cation requests from clients and robots. Subsequently
it registers these requests in the internal data structure.
After authentication the client can work with the sys-
tem whereas the field of possibilities is given by its
authorization. Levels of authorization assigns the sys-
tem administrator and they are checked every time a
user enters into the system. [13]

5. Demo application
One of my aims was to create a demo application in the
form of a web portal for remote management of ground
robots at the Faculty of Information Technology in
order to test the created communication platform. [14]

I started up the server on a virtual server with a pub-
lic IP address, a fast enough hardware and connection.
I also established a database with testing data on the

virtual server. As reference robots I chose robotic labo-
ratory at the Faculty of Information Technology, which
belongs to the group Robo@FIT [15]. All robots are
based on a robotic platform ROS [3].

For the client and graphical user interface, I chose
Web technologies, where I used WebSocket communi-
cation for creating messages based on rosbridge pro-
tocol [6], roslib library [12] and GUI framework boot-
strap. For testing, I created a functional management
system, which is used for practical and research pur-
poses Robo@FIT group.

My work is theoretically dimensioned to an unlim-
ited number of robots and clients, where capacity is
dependent on hardware performance of server 3.1 and
speed of connection.

As a lack of the application I consider its security
in connection with the use of websockets and javascript
that I described in chapter 4. As another drawback I
see a great range of using JavaScript, which is safety
problem on one hand. On the other hand the need of
the client 3.2 hardware performance begins dispropor-
tionately to grow with more complex work, which is
highly undesirable problem. As a solution, I imagine
minimizing the usage of JavaScript and keeping a big
part of the work with the data on the server using PHP
and frameworks.

6. Conclusion
This work thematizes the problem of remote robot
control over a public network, and it explains why this
issue should be solved. It points out one of possible
solutions and explains why the the problem should
be solved in this way. My work outlines the basics
of safety communication in the system and then it
demonstrates created demoapplication 5 and evaluates
advantages and drawbacks of the application.

The result is a functional communication layer that
enables the management of robots 3.3 and clients 3.2.
It resolves security of communication 4.3 between
them, supervises the authorization and authentication.
It also allows you to create extensions to the commu-
nications layer and thus to create various applications
dealing with administration and management of robots
over a public network. The result of this work is also
a demonstration of demoapplication, which is used to
manage ground robots at the Faculty of Information
Technology, Technical University in Brno and robotic
group Robo@FIT [15].

The contribution of this work is in designing a
tool that allows global communication between the
client 3.2 and the robot 3.3 and ensures safety of this
communication 4.3. It represents the interface between



non-ros applications and robots based on ros platform.
It provides advanced management of robots and clients,
solves client’s access rights to robots and helps to
increase the efficiency of the robot.

6.1 Future plans
In a further development of this application I plan
to implement the M:N bond in the communication
between the client and the robot. This means that one
client can control multiple robots, or a robot can be
handled by more clients. Another plan is expanding
the graphical user interface to demo application and
adding new functionality. One possible extension is
also controlling of autonomous robot guard.

The possibility of expanding and experimenting
with communication platform are wide because it com-
bines two different platforms and thus it opens the door
to a huge number of new applications. Another signif-
icant benefit is to provide cheap computing power of
server to a robot and thus save limited resources of the
robot. One of the possible expanding direction which
I imagine could be an application that combines robot
household and thus represents a centralized system
where robots can share other informations.

Cooperation of two robots is performed that one
robot uses data from sensors of second robot, which
saves expensive hardware resources.

As one of the typical use cases we can mention
management solutions of robot cleaners in the business
chain. There is a chain store, which uses autonomous
robots for cleaning their premises at night. Normally,
the administrator would have to set each robot to its
own specific role and then let it run. If it comes to a
failure of some robot, the robot stops working, which
reduces effectiveness of using it. Handyman realizes
the mistake only when he sees the robot by his own
eyes. When using my solution the administrator logs
into the system, starts cleaning mode, and then he can
see what the robot is doing. In case of any failure, the
system informs the controller immediately and then he
can solve the error either online or manually directly
on the robot depending on the type of the error.

7. Acknowledgement

This way I would like to thank Ing. Vı́tězslav Beran,
Ph.D. for professional guidance at work. I would also
like to thank the Faculty of Information Technology
and Robo@FIT group for providing me with space
and robots.

References
[1] Amazon. Amazon warehouse robots, Dec 2014.

https://www.youtube.com/watch?v=
quWFjS3Ci7A.

[2] Aaron Smith Janna Anderson. Ai,
robotics, and the future of jobs, Aug 2014.
http://www.pewinternet.org/2014/
08/06/future-of-jobs/.

[3] Open source. Roslib, Dec 2006. http://www.
ros.org/.

[4] Russell Toris. Robotwebtools, Dec 2013. http:
//robotwebtools.org/index.html.

[5] Jonathan Mace. Rosbridge suite, Apr 2014.
http://wiki.ros.org/rosbridge_
suite.

[6] Jonathan Mace. Rosbridge 2.0 protocol,
Apr 2013. https://github.com/
RobotWebTools/rosbridge_suite/
blob/groovy-devel/ROSBRIDGE_
PROTOCOL.md.

[7] Benjamin Pitzer. Mjpeg server, Aug
2014. http://wiki.ros.org/mjpeg_
server.

[8] Russell Toris. The robot management system,
Apr 2013. http://wiki.ros.org/rms.

[9] Twisted matrix. Twisted matrix, Sept 2011.
https://twistedmatrix.com/trac/.

[10] Andrej Tichý. Communication platform
for management and control of robots, Apr
2015. https://github.com/xtichy09/
Remote-robots-ROBOFIT.

[11] Burak Guzel. Http headers for
dummies, Dec 2009. http://
code.tutsplus.com/tutorials/
http-headers-for-dummies--net-8039.

[12] Ken Conley. Roslib, Dec 2013. http://wiki.
ros.org/roslib.

[13] Heroku. Websocket security, Dec 2012.
https://devcenter.heroku.com/
articles/websocket-security.

[14] Andrej Tichý. Robo@fit portal login, Apr 2015.
http://37.205.11.196/login.html.

[15] Faculty of Information Technology VUTBR.
Robo@fit, Sept 2010. http://www.fit.
vutbr.cz/research/groups/robo/.

https://www.youtube.com/watch?v=quWFjS3Ci7A
https://www.youtube.com/watch?v=quWFjS3Ci7A
http://www.pewinternet.org/2014/08/06/future-of-jobs/
http://www.pewinternet.org/2014/08/06/future-of-jobs/
http://www.ros.org/
http://www.ros.org/
http://robotwebtools.org/index.html
http://robotwebtools.org/index.html
http://wiki.ros.org/rosbridge_suite
http://wiki.ros.org/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite/blob/groovy-devel/ROSBRIDGE_PROTOCOL.md
https://github.com/RobotWebTools/rosbridge_suite/blob/groovy-devel/ROSBRIDGE_PROTOCOL.md
https://github.com/RobotWebTools/rosbridge_suite/blob/groovy-devel/ROSBRIDGE_PROTOCOL.md
https://github.com/RobotWebTools/rosbridge_suite/blob/groovy-devel/ROSBRIDGE_PROTOCOL.md
http://wiki.ros.org/mjpeg_server
http://wiki.ros.org/mjpeg_server
http://wiki.ros.org/rms
https://twistedmatrix.com/trac/
https://github.com/xtichy09/Remote-robots-ROBOFIT
https://github.com/xtichy09/Remote-robots-ROBOFIT
http://code.tutsplus.com/tutorials/http-headers-for-dummies--net-8039
http://code.tutsplus.com/tutorials/http-headers-for-dummies--net-8039
http://code.tutsplus.com/tutorials/http-headers-for-dummies--net-8039
http://wiki.ros.org/roslib
http://wiki.ros.org/roslib
https://devcenter.heroku.com/articles/websocket-security
https://devcenter.heroku.com/articles/websocket-security
http://37.205.11.196/login.html
http://www.fit.vutbr.cz/research/groups/robo/
http://www.fit.vutbr.cz/research/groups/robo/

	Introduction
	Theory
	Architecture of the system
	Communication and working
	Demo application
	Conclusion
	Acknowledgement
	References

