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Abstract
The present paper proposes an idea for a new investigation area in automata theory — n-parallel
jumping finite automata. These automata are a combination of recently presented jumping finite
automata and more settled n-parallel grammars. They read input words discontinuously as general
jumping finite automata; however, they use multiple heads to do so, which is quite similar to the
principle of the multiple nonterminals in n-parallel right linear grammars. This paper establishes
definitions for such automata, outlines expected results, and suggests future investigation areas.
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1. Introduction

In previous century, most formal models were designed
for continuous information processing. This, however,
does not often reflects the requirements of modern in-
formation methods. Therefore, there is currently active
research around the formal models that process infor-
mation in a discontinuous way. Most notably, there
are newly invented jumping finite automata that are
completely focused on discontinuous reading. These
automata go so far that they cannot even define some
quite simple languages, e.g. a∗b∗, because they cannot
guarantee any specific reading order between jumps.

The present paper proposes an idea for a modifi-
cation of these automata — n-parallel jumping finite
automata. They take inspiration from n-parallel gram-
mars and divide input into n parts; each part is then
processed with a separate head. This way, each part
is read discontinuously but the overall order between
parts is preserved. Consequently, such automata can
define richer language families than standard jumping
finite automata. This paper establishes definitions for
such automata and outlines expected results.

2. Preliminaries

This paper assumes that the reader is familiar with
theory of automata and formal languages (see [1, 2]).
Let N denote the set of all positive integers. For a set Q,
card(Q) denotes the cardinality of Q. For an alphabet
(finite nonempty set) V , V ∗ represents the free monoid
generated by V under operation of concatenation. The
unit of V ∗ is denoted by ε . For x ∈V ∗, |x| denotes the
length of x, and al ph(x) denotes the set of all symbols
occurring in x; for instance, al ph(0010) = {0,1}. For
a ∈V , |x|a denotes the number of occurrences of a in
x. Let x = a1a2 . . .an, where ai ∈ V , for some n ≥ 0
(x = ε if and only if n = 0).

A general jumping finite automaton (see [3]), a
GJFA for short, is a quintuple, M = (Q,Σ,R,s,F),
where Q is a finite set of states, Σ is an input alphabet,
Q∩Σ = /0, R⊆ Q×Σ∗×Q is finite, s ∈ Q is the start
state, and F is a set of final states. Members of R are
referred as rules of M and instead of (p,y,q) ∈ R, we
write py→ q ∈ R. A configuration of M is any string
in Σ∗QΣ∗. The binary jumping relation, symbolically
denoted by y, over Σ∗QΣ∗, is defined as follows. Let
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x,z,x′,z′ ∈ Σ∗ such that xz = x′z′ and py→ q∈ R; then,
M makes a jump from xpyz to x′qz′, symbolically writ-
ten as xpyz y x′qz′. In standard manner, we extend y
to ym, where m≥ 0. Let y+ and y∗ denote the tran-
sitive closure of y and transitive-reflexive closure of
y, respectively. The language accepted by M, denoted
by L(M), is defined as L(M) = {uv | u,v ∈ Σ∗, usv y∗
f , f ∈ F}. We also define two special cases of jump-
ing relation. Let w,x,y,z ∈ Σ∗; then, (1) M makes a
left jump from wxpyz to wqxz, symbolically written
as wxpyz l y wqxz , and (2) M makes a right jump
from wpyxz to wxqz, written as wpyxz r y wxqz. We
denote language accepted by M as lL(M), and rL(M)
when M uses only left jumps, and M uses only right
jumps, respectively.

For n > 0, an n-parallel right linear grammar (see
[4, 5, 6, 7, 8]), an n-PRLG for short, is an (n+3)-tuple
G= (N1, . . . ,Nn,T,S,P) where Ni, 1≤ i≤ n, are mutu-
ally disjoint nonterminal alphabets, T is a terminal al-
phabet, S is sentence symbol, S not in N1∪·· ·∪Nn∪T ,
and P is a finite set of pairs. Members of P are re-
ferred as rules of G and instead of (X ,x) ∈ P, we write
X → x ∈ P. Each rule in P has one of the following
forms: (1) S→ X1 . . .Xn, Xi ∈ Ni, 1≤ i≤ n, (2) Xi→
ai, Xi ∈ Ni, ai ∈ T ∗, 1 ≤ i ≤ n, and (3) Xi → aiYi,
Xi,Yi ∈ Ni, ai ∈ T ∗, 1≤ i≤ n. The binary yield oper-
ation, symbolically denoted by ⇒, is defined as fol-
lows. Let x,y ∈ (N1∪·· ·∪Nn∪{S}∪T )∗ then x⇒ y
iff either x = S and S→ y ∈ P or x = a1X1 . . .anXn,
y = a1x1 . . .anxn and ai ∈ T ∗, Xi ∈ Ni, Xi → xi ∈ P,
1 ≤ i ≤ n. In standard manner, we extend⇒ to⇒m,
where m ≥ 0. Let ⇒+ and ⇒∗ denote the transitive
closure of⇒ and transitive-reflexive closure of⇒, re-
spectively. The language accepted by G, denoted by
L(G), is defined as L(G) = {x | S⇒∗ x, x ∈ T ∗}.

3. Definitions
In this section, we define n-parallel general jumping
finite automaton together with multiple modified vari-
ants of its jumping relations. Each variant of jumping
relation significantly changes behavior of such automa-
ton. Thus, in fact, we introduce 12 distinct automata.

Definition 1. Let n ∈ N. An n-parallel general jump-
ing finite automaton, an n-PGJFA for short, is a quin-
tuple

M = (Q,Σ,R,S,F)

where Q is a finite set of states, Σ is an input alphabet,
Q∩Σ = /0, R⊆ Q×Σ∗×Q is finite, S⊆ Qn is a set of
start state strings, and F is a set of final states. Members
of R are referred as rules of M and instead of (p,y,q)∈
R, we write py→ q ∈ R.

A configuration of M is any string in Σ∗QΣ∗. Let
X denote the set of all configurations over M. The
binary jumping relation, symbolically denoted by y,
over X , is defined as follows. Let x,z,x′,z′ ∈ Σ∗ such
that xz = x′z′ and py→ q ∈ R; then, M makes a jump
from xpyz to x′qz′, symbolically written as

xpyz y x′qz′.

Let $ be a special symbol, $ 6∈Q∪Σ. An n-configu-
ration of M is any string in (X{$})n. Let nX denote the
set of all n-configurations over M. The binary first n-
jumping relation, symbolically denoted by ny1, over
nX , is defined as follows. Let ζ1$ . . .ζn$,ϑ1$ . . .ϑn$ ∈
nX , so ζi,ϑi ∈ X , 1≤ i≤ n; then, M makes an n-jump
from ζ1$ . . .ζn$ to ϑ1$ . . .ϑn$, symbolically written as

ζ1$ . . .ζn$ ny1 ϑ1$ . . .ϑn$

iff ζi y ϑi for all 1 ≤ i ≤ n. In standard manner we
extend ny1 to nym

1 , where m≥ 0. Let ny+
1 and ny∗1

denote the transitive closure of n y1 and transitive-
reflexive closure of ny1, respectively.

The language accepted by M, denoted by L(M,n,1),
is defined as L(M,n,1) = {u1v1 . . .unvn | s1 . . .sn ∈
S, ui,vi ∈Σ∗, u1s1v1$ . . .unsnvn$ ny∗1 f1$ . . . fn$, fi ∈
F, 1≤ i≤ n}. Let w ∈ Σ∗. We say that M accepts w if
and only if w ∈ L(M,n,1). M rejects w if and only if
w ∈ Σ∗−L(M,n,1).

Next, we define two special cases of jumping rela-
tions that corresponds with jumps in GJFAs.

Definition 2. Let M = (Q,Σ,R,S,F) be an n-PGJFA.
Let w,x,y,z ∈ Σ∗, and py→ q ∈ R; then, (1) M makes
a left jump from wxpyz to wqxz, symbolically written
as

wxpyz l y wqxz

and (2) M makes a right jump from wpyxz to wxqz,
written as

wpyxz r y wxqz.

Let X denote the set of all configurations over M,
nX denotes the set of all n-configurations over M, and
ζ1$ . . .ζn$,ϑ1$ . . .ϑn$ ∈ nX , so ζi,ϑi ∈ X , 1 ≤ i ≤ n;
then, (1) M makes a left first n-jump from ζ1$ . . .ζn$
to ϑ1$ . . .ϑn$, symbolically written as

ζ1$ . . .ζn$ n−l y1 ϑ1$ . . .ϑn$

iff ζi l y ϑi for all 1≤ i≤ n; and (2) M makes a right
first n-jump from ζ1$ . . .ζn$ to ϑ1$ . . .ϑn$, written as

ζ1$ . . .ζn$ n−r y1 ϑ1$ . . .ϑn$

iff ζi r y ϑi for all 1≤ i≤ n.



Extend n−l y1 and n−r y1 to n−l ym
1 , n−l y+

1 ,
n−ly∗1, n−rym

1 , n−ry+
1 , and n−ry∗1, where m≥ 0, by

analogy with extending the corresponding notations
for n y1. Let L(M,n−l,1), and L(M,n−r,1) denote
language accepted by M using only left first n-jumps,
and M using only right first n-jumps, respectively.

Now, we also define three different cases of n-
jumping relation.

Definition 3. Let M = (Q,Σ,R,S,F) be an n-PGJFA.
Let X denote the set of all configurations over M, nX
denotes the set of all n-configurations over M, and
ζ1$ . . .ζn$,ϑ1$ . . .ϑn$ ∈ nX , so ζi,ϑi ∈ X , 1 ≤ i ≤ n;
then, (1) M makes a second n-jump from ζ1$ . . .ζn$ to
ϑ1$ . . .ϑn$, symbolically written as

ζ1$ . . .ζn$ ny2 ϑ1$ . . .ϑn$

iff card(al ph(ζ1$ . . .ζn$)∩Q) = 1, and ζi yϑi for all
1≤ i≤ n; (2) M makes a third n-jump from ζ1$ . . .ζn$
to ϑ1$ . . .ϑn$, written as

ζ1$ . . .ζn$ ny3 ϑ1$ . . .ϑn$

iff either ζi y ϑi or ζi = ϑi, 1 ≤ i ≤ n; and (3) M
makes a fourth n-jump from ζ1$ . . .ζn$ to ϑ1$ . . .ϑn$,
written as

ζ1$ . . .ζn$ ny4 ϑ1$ . . .ϑn$

iff ζ1$ . . .ζn$ ny3 ϑ1$ . . .ϑn$ and ζi 6=ϑi for no more
than one i, 1≤ i≤ n.

Extend ny2, ny3, and ny4 to nym
2 , ny+

2 , ny∗2,
nym

3 , ny+
3 , ny∗3, nym

4 , ny+
4 , and ny∗4, where m≥ 0,

by analogy with extending the corresponding notations
for n y1. Let L(M,n,2), L(M,n,3), and L(M,n,4)
denote language accepted by M using only second n-
jumps, M using only third n-jumps, and M using only
fourth n-jumps, respectively.

If we combine previous definitions together, we
can also get L(M,n−l,2), L(M,n−r,2), L(M,n−l,3),
L(M,n−r,3), L(M,n−l,4), and L(M,n−r,4).

4. Examples
This section illustrates previous definitions on three
simple examples. Each example corresponds to the def-
inition with the same ordinal number. Every example
defines specific n-PGJFA and shows the language ac-
cepted with such automaton and corresponding jumps.

Example 1. Consider the 2-PGJFA

M = ({s,r, p,q},Σ,R,{sr},{s,r}),

where Σ = {a,b,c,d} and R consists of the rules

sa→ p, pb→ s, rc→ q, qd→ r.

Starting from sr, M has to read some a, and some b
with the first head and some c, and some d with the
second head, entering again the start (and also final)
states sr. Therefore, the accepted language is

L(M,2,1) = {uv | u ∈ {a,b}∗, v ∈ {c,d}∗,
|w|a = |w|b = |w|c = |w|d}.

Such language cannot be neither accepted by any
GJFA, or generated by any n-PRLG.

Example 2. Consider the 2-PGJFA

M = ({s,r, t},Σ,R,{ss},{s}),

where Σ = {a,b,c} and R consists of the rules

sa→ r, rb→ t, tc→ s.

Starting from ss, M has to read some a, some b, and
some c with both heads. If we work with unbound
jumps or left jumps, each head can read a, b, and c
in arbitrary order. However, if we work only with
right jumps, each head must read input symbols in the
original order. Therefore, the accepted languages are

L(M,2,1) = {ww |w∈ {a,b,c}∗, |w|a = |w|b = |w|c},

L(M,2−l,1) = L(M,2,1),

L(M,2−r,1) = {ww | w ∈ {abc}∗}.

It is not yet clear how precisely do left jumps affect
the acceptance power of GJFAs, and n-PGJFAs. Lan-
guage L(M,2−r,1) can be generated by an n-PRLG.

Example 3. Consider the 2-PGJFA

M = ({s,r, t},Σ,R,{ss,sr},{s,r}),

where Σ = {a,b} and R consists of the rules

sa→ s, rb→ t, tb→ r.

If we start from ss, both heads of M have to read some
a; if we start from sr, M has to read two times some
a with the first head, and two times some b with the
second head. If we use second n-jumps, then we can
start only from ss; if we use third n-jumps or fourth
n-jumps, then we desynchronize the heads. Therefore,
the accepted languages are

L(M,2,1) = {w | w ∈ {a}2m, m≥ 0}
∪{w | w ∈ {a}2m{b}2m, m≥ 0},



L(M,2,2) = {w | w ∈ {a}2m, m≥ 0},

L(M,2,3) = {w | w ∈ {a}m, m≥ 0}
∪{w | w ∈ {a}m{b}2l, m, l ≥ 0},

L(M,2,4) = L(M,2,3).

Observed behavior of these different n-jumping
relations will be discussed in the next section.

5. Expected results
In general, we predict that every variant of n-PGJFAs,
with its increasing n, will define an infinite hierarchy
of language families. This is well-known and com-
mon property for parallel grammars, such as n-parallel
grammars and simple matrix grammars (see [9]).

Let n= 1; then, all variants of 1-PGJFAs should ac-
cept same language families as GJFAs. Consequently
1-PGJFAs with right jumps should accept same lan-
guage family as classical finite automata. Further, for
n = 1, all n-jumping relations should work in the same
way, because there are no multiple heads that could be
synchronized in any way.

Let n≥ 1; then, we are almost sure that n-PGJFAs
with right jumps define exactly the same infinite hier-
archy of language families as n-PRLGs. The power
of other variants is currently unknown and is subject
for further research. It is, however, possible that third
n-jumps and fourth n-jumps define the same infinite
hierarchy of language families.

It is also possible that we do not find any counter-
part in grammars for unrestricted version of n-PGJFAs.
That was the same for GJFAs, until jumping gram-
mars (see [10]) were recently introduced. Therefore,
there is the area for further research. In the same
manner, we could also try to investigate jumping au-
tomata that would use properties from simple matrix
grammars, which are generally more powerful than
n-parallel grammars.

6. Conclusion
This paper suggested the study of n-parallel jump-
ing finite automata as a new investigation area in au-
tomata theory. Within the previous sections, we es-
tablished definitions for such automata together with
multiple variants of their jumping relations. Subse-
quently, several examples briefly showed differences
between these jumping relations.

We believe that these automata will create more
general model of jumping finite automata; in the same
way as n-parallel right linear grammars create more

general model of right linear grammars. Such ap-
proach would combine positive effects of jumping and
parallelism, and therefore enabled define language fam-
ilies that cannot be defined by neither of these previous
models alone. Furthermore, with restricted variants of
jumping relations, we could also cover all previously
defined language families.

As a following step in the research, we need to
prepare theorems that will mathematically prove our
claims about the expected results.
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