2015

http://excel.fit.vutbr.cz

Error Recovery during Top-Down Parsing:
Acceptable-sets derived from continuation

Alena Oblukova*

Abstract

Parser is one of the most important parts of compiler. Syntax-Directed Translation is often used,
that means that parser controls: semantic actions and generation of syntax tree. When the input
contains an error, parser cannot continue and the whole compiler has to stop. Therefore, it is
important that parser supports good error recovery. Error recovery requires parser to be modified
with heuristic, so syntax analyzer can continue parsing even though an error is detected. There are
several error-recovery strategies and methods. This paper describes one of them - acceptable-sets
derived from continuations - continuation in LL parsers. This method is not so well known, however
it is easy to explain and implement. We have implemented parser that uses this error recovery
method. This method has been modified to be more encapsulated and clearer. Implemented parser
can be used in lectures to demonstrate error recovery in top-down parser.

Keywords: syntax analysis — LL grammars — error recovery

Supplementary Material: Code attached

*xobluk00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

There will always be an error in program code. Miss-
ing semicolon, extra or missing bracket. Without error
recovery, when a first error in the input occurs, the
parser stops. In that case, programmer cannot see all
errors in the program, only the first one. The purpose
of error recovery methods is to put parser into a state,
in which it can continue parsing, at the same time re-
porting error comprehensibly to help the programmer.
Even with error recovery in place, the input can’t be
completely fixed, since parser cannot know, what the
programmer wanted to write. None of error recovery
method can fix the input, it only enables parser to con-
tinue parsing. There are four types of programming
erTors:

e Lexical errors - include misspelling of keywords,
identifiers (e.g. whille instead of while)

e Semantic errors - include mismatch between
operator and operands (e.g. integer to float)

e Logical errors - the program syntax may be cor-
rect, however, it may not reflect, what the pro-

grammer wanted to achieve

e Syntactic errors - when parser doesn’t have any
grammatical rule, which it can use (e.g. use of
semicolon instead of comma, missing operator)

[1].

In this paper, only syntactic errors are discussed, so
the term error means syntactic error [1]. Goals of error
recovery are:

e report the error clearly and accurately

e recover quickly enough to detect subsequent er-
rors

e not to report non-existent errors [1]

There are two approaches: top-down parsing and
bottom-up parsing. Not every method can be used in
both approaches. Methods can be divided into several
classes, depending on the level on which they handle
the error. Global error handling methods use global
context, the complete input. The most known method
is least-error-correction, which is efficient, neverthe-
less too complicated to implement. Phase-level recov-
ery methods use only part of context. Methods, which

http://excel.fit.vutbr.cz
mailto:xobluk00@stud.fit.vutbr.cz

use only the actual parser state, are called local er-
ror handling methods. This class is the largest; Panic
mode, Follow-set error recovery and Acceptable-sets
derived from continuation all belong here. Suffix meth-
ods don’t use any context. Lastly, Ad Hoc methods
do not really form a class, they also do not use any
context. Sum and substance of these methods is to
change grammar in such a way that the parser does not
even recognize that the input contains an error [2].

Method discussed in this paper is called Acceptable
sets derived from continuations. It combines quick
error recovery, small memory needs, easy implementa-
tion with quick and accurate reporting of errors. This
method has been used because it is suitable for demon-
stration of error recovery in Top-Down parser. Each
step of the method has been illustrated on a simple
grammar.

There are two approaches how to implement Top-
Down parser. Recursive-Descent Parsing and Predic-
tive Parsing. Predictive parsing is not so commonly
used, but is easier to demonstrate error recovery in
Top-Down parser. Predictive parsing uses LL table.
Terms, such as LL table, First Set, grammar, are used
in this paper. All thess terms are described in book
Formal Languages and Computation [3]. Implemented
parser use simple grammar. This grammar is not Tur-
ing complete, but can be used to illustrate common
errors. Whole grammar consists of 15 rules. Only 9
rules from grammar are written here.

1. <PROGRAM) — begin(BODY)end

2. (BODY) —

3. (BODY) — <STATEMENT) (BODY)

4. (TERM) — int

5. (TERM) — id

6. (STATEMENT) — id = (EXPRESSION)
7. (EXPRESSION) — (TERM)(EXP)

8. (EXP) — <EXPRESSION)

9. (EXP) —

Non-terminals in this grammar are PROGRAM, BODY,
STATEMENT, TYPE, TERM, EXPRESSION and EXP.
Terminals are begin, end, ;, read, id, write, string, int,
=, (,),+ and -. Each input has to has its end. In liter-
ature the $ sign is used, in this grammar the terminal
end represent the ending symbol. There are two ways
how to implement LL parser. Recursive-Descent Pars-
ing and Predictive Parsing. In this paper, Predictive
Parsing is used, since it is easier to understand. LL-
table is needed in Predictive Parsing. It is constructed
using Empty set, First set, Follow set and Predict set.

The construction of LL table can be found in Formal
Languages and Computation [3].

In this paper local error handling methods are men-
tioned. Most of local error handling methods use Ac-
ceptable set.

3.1 Acceptable set

Acceptable set is a set that is calculated from the parser
state, when an error occur. After detecting error, sym-
bols from the input are skipped until a symbol from the
input is found as a member of Acceptable set. Local
error handling methods differ in how they calculate
Acceptable set.

The most known local error handling method is
Follow-set error recovery method. At Faculty of In-
formation Technology this method is also known as
Hartmanova metoda zotavent z chyb. The method is
easy to explain and easy to implement. It uses the First
and Follow sets that together makes the Acceptable
set.

3.2 Acceptable-sets derived from continuation
Acceptable-sets derived from continuation is a local
error handling method. It uses very interesting and
effective approach. The biggest difference between
this method and other local error handling methods is
that this method uses two grammars. Supposed that
when error is detected, part of the input has already
been processed. This part is a prefix u of a sentence uv.
Uv is a sentence in language, so the only thing that has
to be done, is to find string v, that is continuation of u.
The continuation computes as follows:

Continuation is a sentence, which has to be pro-
duced using the fewest productions steps. The trick is
to find the quickest end for each nonterminal, in other
words to find which right-hand side leads the fastest
to string composed only of terminals. It is possible
to compute it in advance, using a number called step
count. Each terminal has step count of 0. Nontermi-
nals have step count set to infinity. Each right-hand
side has step count equal to sum of all its members.
Left-hand side has count number equal to right-hand
side count+1. If this number is less then the previous
step count of nonterminal, step count of nonterminal
is updated. This process repeats until none of the step
counts changes. Proper grammar should have all count
steps less than infinity.

Here are few steps of creating continuation gram-
mar. Numbers in brackets represent step counts [2]

(PROGRAM)[e<] — begin[0](BODY)[eo]end|0]
(BODY)[eo] — €]0]
|(STATEMENT) |e0|; [0](BODY)[e]
(STATEMENT)[es] — id[0] = [0)(EX PRESSION)[c9]
(TERM)[o0] — int|0]
a0
(EXPRESSION)[eo] — (T ERM) o] (EX P)[o0]
(EXP)[o0] —
|[0]

(PROGRAM)[o0] — begin[0](BODY)[ec]end|0]
(BODY)[1] — €[0]

|(STATEMENT) |e0|; [0](BODY)[]
(STATEMENT) 0] — id[0] = [0](EX PRESSION))[eo]
(TERM)[1] — int[0]

—[0](EXPRESSION)[~]

|id[0]
(EXPRESSION)[0o] — (T ERM)[oo](EX P)[o0]
(EXP)[1] = —[0](EXPRESSION)[co]

|€[0]

For each nonterminal (left-hand side) the right-
hand side with lowest step count is picked. If there is
no single lowest step count number among the right-
hand sides, the author of the parser has to pick one
rule (in this paper (TERM)[1] — id|[0] is not used).
These rules form a continuation grammar. Continua-
tion grammar doesn’t have to form a proper grammar,
it is used only for error recovery.

1. (PROGRAM) — begin(BODY)end
2. (BODY) — ¢

3. (STATEMENT) — id = (EXPRESSION)
4. (TERM) — int

5. (EXPRESSION) —
6

. (EXP) — ¢

(TERM)(EXP)

This grammar is called continuation grammar and will
be used in continuation in an LL parser. When error
occurs, parser has to call error recovery function that
continues parsing in error mode. As long as parser is
not recovered, parser in error mode use continuation
grammar instead of normal grammar.

3.3 Continuation in an LL parser

Continuation grammar is already set, so the continua-
tion is easy to compute - when an error occurs, rules
from continuation grammar are used. Now it is nec-
essary to determinate acceptable set. Every time the
nonterminal is derived, all terminals, which are pro-
duced, end in the acceptable set. Moreover, every time
a nonterminal is replaced by its right-hand side from
continuation grammar, First set of this nonterminal is
added to acceptable set [2].

Now, all the important things are known, so an
algorithm can be written. The method works as follows

[4]:

1. replace nonterminal: First nonterminal on the
stack is found. Using only continuation gram-
mar, the nonterminal is replaced by its right-
hand side. Each terminal from the right-hand
side of the rule is added to the acceptable set.
Also, the First set of derived nonterminal is
added to the the acceptable set.

2. skip unacceptable tokens: Zero or more to-
kens form the input are skipped, until a symbol
from acceptable set is found. Since ending sym-
bol (in this paper it is terminal end) is acceptable,
this step is not infinite.

3. resynchronize the parser: Parser tries to con-
tinue. If it is possible to make a move, parsing
can normally continue. If parser can’t continue,
modified parser has to continue as follows:

e nonterminal on the top of the stack: If
nonterminal is on top of the stack and there
is no grammar rule to use, algorithm re-
peats from 1.

e terminal on the top of the stack: If there
is a terminal on top of the stack and it
cannot be matched with the input symbol,
expected symbol is inserted. Since every
token has its value, implicit value is given
to each inserted symbol (e.g. 0 to int, err_id
toid). Step 3 is repeated until the parser
is resynchronized.

We propose a modification of the algorithm. In
step 3, symbol on top of the stack is not popped im-
mediately. Parser only tries to match the terminal with
the input symbol or only tries to find a grammar rule
for the nonterminal. If it is possible to make a move,
error recovery was successful. Move itself is made by
parser in normal mode. If the move is not possible,
error recovery is not finished and continues depending
on what is on top of the stack - step 1 for nonterminal,
step 3 for terminal. The advantage of the proposed
approach is that when move is possible, it is clear that
the parser has reached correct state and therefore has
recovered from the error. The second advantage of this
approach is, that when terminal is popped or nonter-
minal replaced by its right-hand site, error recovery is
successfully ended. However, what if another error on
the input occurs? Immediately after error recovery the
parser cannot continue and error recovery has to stop.
When the parser in error mode only checks if the move
can be made, no error immediately after recovery can
happen.

Proposed modification only uses continuation gram-
mar for error recovery and unlike the original algo-
rithm, normal grammar is only used for test and not
for the move itself. The complexity is slightly higher
but the error recovery mechanism is encapsulated and
more clear.

Suppose that there is a short program with error as
shown in figure 1

begin
a == ;
end

Figure 1. Short program with error

Sequence of tokens is: T_begin T_id T_equal T_equal
T_id T_semicolon T _end.

Error is on the second line: extra equal. The recov-
ery with my modification works as follows:

Parser starts parsing the input.

stack input |rule
(PROGRAM) T_begin | 1
end(BODY)begin T _begin | POP
end (BODY) T.id 3
end(BODY) (STATEMENT) Tid |6
end(BODY); (EXPRESSION) = id|Tid _ |POP
end(BODY), (EXPRESSION) = |T_equal | POP
end(BODYY; (EXPRESSION) T_equal [ERROR

There is no grammar rule that can be used. Parser
cannot continue, error recovery has to start.

Replace nonterminal: First terminal,
(EXPRESSION), is found. It is replaces by its right-
hand side, using continuation grammar:
(EXPRESSION) — (TERM){EXP),

(TERM) — int,
(EXP) — ¢
Acceptable set = { (, int, id }.

stack
end(BODY); int

input |rule
T_begin | 1

Skip unacceptable tokens: In the input is 7_equal
that is not in acceptable set, token is skipped.

In the input is 7_id that is in acceptable set. Token is
not skipped.

stack
end (BODY); int

input |rule
T.int |1

Terminal on the top of the stack: Terminal 7_int is
on the top of the stack. It can be matched with the

input.
Error recovery is finished, parsing can continue.

3.4 Implementation of error recovery
We have successfully implemented parser with this
error recovery method as a console application. It
expects two files on input: one file with tokens (termi-
nals) and second, where used rules are written. Infor-
mation about the analysis is written to standard output.
Optional parameter is -n. With this parametr error
recovery is turned on. This parameter helps users to
compare parser with error recovery and without error
recovery.

Suppose that there is a short program with error as
shown in figure 2

begin
a = (b+\;
)

end

Figure 2. Short program with error

Sequence of tokens is: T_begin T_id T_equal
T _bracket_left T_id T_plus T_semicolon T _bracket_right
T _end.

Output from my application using Acceptable-sets
derived from continuation method to deal with these
errors can be seen on screenshot 3.

Parser is reading from soubory/faild.txt and write to soubory/out4.txt

stack | input |rule
1

=

re 1
| | POP
|r: 3
|r: 10
| POP
| POP
|r: 12
| POP
|rz 9
| POP
|r: 13
| POP
|error

=
oo
w

L7
W
@

@
911
]

L L LR
PHEBEBREBPERRERR
[TRTRTRTRCRTRT TR TR TR
NNNNNNNNNN
D R
SS90V ODLd

|
|
|
|
|
® 18 9 |
I
|
|
|

2
2
2
2
1
1

Error recovery:

Nonterminal N_expression{19) is derived using continuation grammar
Replaced by its right-hand side: : N_exp(208) N_term{(18)
Nonterminal N_exp(20) is derived using continuation grammar
Replaced by its right-hand side: : T_epsilon(13)

Nonterminal N_term(18) is derived using continuation grammar
Replaced by its right-hand side: : T_int(8)

Inserted terminal: T_int(8)

Error recovery was successful, parsing continues

stack | input [rule
] 10 | 18 |POP
] | @& |error
Error recovery:
Nonterminal N_body(15) is derived using continuation grammar
Replaced by its right-hand side: : T_epsilon(13)
Inserted terminal: T_semicolon{2)
Error recovery was successful, parsing continues

stack | input [rule

) | e |PoP

Finished successfully!:)

Figure 3. Screenshot of application run from terminal

Parser is one of the main parts of compiler. When error
in the input occurs, parser without error recovery has

to stop. When parser stops, the whole compiler has to
stop. This is unfortunate, because only the first error is
detected. Errors can be lexical, discovered by lexical
analyzer, semantic, discovered by semantic analyzer
and syntactic, discovered by syntactic analyzer - parser.
In this paper, only syntactic errors are discussed.

There are many error recovery methods. They are
divided into classes, depending on level on which they
handle the error.

Acceptable-sets derived from continuation method
described in this paper belongs to the largest class:
local error handling methods. Acceptable-sets derived
from continuation is a method, which is not commonly
described. However, it is easy to explain so it can
be used in lessons to demonstrate how error recovery
in Top-Down Parsers works. When an error in input
occurs, program cannot be compiled. Advantage of
this method is, that error recovery is as fast as possible
and that it reports errors effectively.

It would be very interesting to compare this method
with other methods more deeply. Also this method
could be implemented in LR parsers. Since this method
is implemented only as a console application, it would
be great to implement graphical application for better
demonstration in lectures.

I would like to thank my supervisor Prof. RNDr.
Alexander Meduna, CSc. for all his help with with
this paper.

[1]1 A.V. Aho, R. Sethi, and J. D. Ullman. Compilers :
principles, techniques, and tools. Addison-Wesley,
2nd ed., 2007. ISBN: 0321486811.

[2] D. Grune and C. J.H. Jacobs. Parsing Techniques:
A Practical Guide. Springer; 2nd ed., 2008. ISBN:
1441919015.

[3] Alexander Meduna. Formal Languages and Com-
putation. Taylor & Francis Informa plc, 2014.
ISBN: 978-1-4665-1345-7.

[4] D. Grune, K. van Reeuwijk, E. H. Bal, C. J. H. Ja-
cobs, and K. Langendoen. Modern Compiler De-
sign. Springer; 2nd ed., 2012. ISBN: 1461446988.

	Introduction
	Predictive Parsing
	Error recovery
	Conclusions
	References

