2015

http://excel.fit.vutbr.cz

Rain prediction from meteoradar images

Michael Vicek

weights
i inputs

Abstract

X3 .—.
transfer
function
X 9
" threshold

activation
functon

net input

Ry

input layer ! hidden layers output layer

This paper presents a software solution for making a short-term rain prediction. It focuses on
predicting precipitation solely on the soil of Czech Republic, although it is possible to apply to other
areas, if proper modifications are made. This solution uses meteoradar images from Czech radars
and a specific machine learning algorithm called Artificial neural network. The received meteoradar
images are further processed and fed to the neural network, which makes an informed prediction
of upcoming precipitation for a specific location anywhere in Czech Republic. The project is in an
early experimenting phase, and as of now it is delivering a short-term prediction with success rates
up to 73% for the earliest of predictions (10 minutes). The prediction success and length has to
rise yet. This solution provides a robust way to predict rain on a national scale. It can be further
improved to be used on mobile devices using utilities like GPS.

Keywords: rain prediction — neural network — image processing

Supplementary Material: N/A

*xvlcek21@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

Artificial neural networks are being increasingly used
to solve a wide range of problems in many areas of
interest worldwide, like character recognition, stock
market prediction, traffic monitoring, medicine and
many other areas, which can be accounted to their ex-
cellent ability of finding trends and patterns in large
quantities of data. This property can valuable in mete-
orology as well, as it can provide the approximation of
future development of various meteorological parame-
ters. Targeting the precipitation specifically, they can
be used to anticipate the upcoming fronts by analysis
of recent history from images in a similar way as their
biological equivalent (human brain) would perform it.

The goal of this work is to provide a precise pre-
diction of rain in the diverse topographic relief in
Czech Republic using an artificial neural network. This

method represents one of many ways to perform a
short-term rain forecast, and even though it has been
used already before and it is not a standard way, the po-
tential rises with rising computational power of present
computers, because the training is a very demanding
process in this regard. The most important task in this
work is to create a reliable model by using a sizeable
database of radar images for neural network training
as well as implementation and choosing a correct con-
figuration of the neural network. This results in a
properly trained neural network, which will then be
tested for prediction success. Considering that this
work also serves as an evaluation of the methodology,
proper testing and experimenting with different con-
figurations is a vital part. The evaluation will be done
by comparing the outputs of trained neural network
with expected outputs (images, that were not seen by
neural network before). This process should result


http://excel.fit.vutbr.cz
mailto:xvlcek21@stud.fit.vutbr.cz

in finding an ideal configuration for the final form of
neural network, which has the most success.

There already exist some systems performing rain
predictions. Commercial software providing this kind
of service is distributed as a black-box. Its specifics
describing the means by which the predictions are per-
formed are not publicly available, and as such, no in-
formation about implementation is provided. Thus, the
comparison of models can be based only on the results.
Many rain prediction systems are focusing on long-
term predictions, with less emphasis on spatial precip-
itation accuracy, but they also often apply a different
model for short-term predictions, which can use image
processing (cloud motion detection, etc.), measured
data analysis (wind speed, radar image reflectivity,...),
or even neural networks. These systems are often
developed and maintained by national weather institu-
tions and can cover a much wider range of functions.
The most significant is the Meteor - Aladin system,
which gives a forecast of various weather elements
(temperature, precipitation, wind, pressure, humidity).
This work provides an independent and transparent
solution specifically for the short-term rain prediction.
Also, a technical report was made by Lukas Putna in
2009 on a similar topic, and some main differences are
discussed in the section 3.2.

Now, the process of creating the model for this
specific task will be briefly described. First, consider-
able amount of work is needed to process and group
the images to serve as an input for the neural network.
Then, a precise and possibly universal implementa-
tion of neural network training process must be done,
which will be used to teach the neural network. The
experiments with different neural network configura-
tions follow, looking for the highest forecast success
rate. Subsequently, the means to using a trained arti-
ficial neural network have to be implemented. Once
the ideal configuration is found, it can be used for any
following predictions.

The project is in the experimenting phase at the
moment, testing many possible neural network config-
urations and training set collections. So far, the earliest
predictions have up to 73% success in rain prediction.
This number is expected to rise throughout the experi-
menting phase. Longer prediction results will be added
once the earliest prediction success rates stabilize.

The basic idea behind this machine learning algorithm
is to create a computational model, which behaves in a
similar way to the human brain. To understand how it
works, the basic elements of artificial neural networks

_— Dendrites
- Myelin sheath

Nucleus I|I |
/

fl—
\ Schwanfi
Axon  cells

Axon
+  Terminals
___— Cell body _ 'Y\

Nodes
of Ranvier

Figure 1. Brain neuron. [1]

weights

activation
functon

net input
Iit’fi-

Qo

activation

transfer
function

0,
threshold

Figure 2. Artificial neuron.

have to be described.

2.1 Neuron

Both biological and artificial neural network consist
of elements called neurons, which are capable of re-
ceiving, carrying, processing and sending information.
The structure of a brain neuron is illustrated in figure
1. The neuron receives signals from its many den-
drites. Each of these carry a signal from one neuron
to the other, and every one of the signals has different
weight, as it goes through to the target neuron. All
the weighted signals received are then accumulated in
the neuron body (soma), and if the total energy passes
a certain threshold value, the neuron sends its own
impulse through the output channel called the axon,
which is connected to the dendrites of other neurons.
Figure 2 shows the structure of artificial neuron. We
can see, that the structures of a brain neuron and an
artificial neuron are analogous. Inputs and weights rep-
resent the dendrites carrying the weighted signals, sum
function and threshold value represent the neural cell
body and the output can be viewed as an artificial axon.
Output of the artificial neuron y; can be expressed as
follows [5]:

n

y=() xewi+6) (1)

k=0
where:

e ¢ is the transformation function,

® )i oX;wj is the aggregation function,

o X is the k-th value from input value vector,

® wy is the k-th value from weight value vector,



llll

hidden layers '

input layer | output layer

Figure 3. Layered neural network topology example.

e 0 is the threshold function,
e n is the value count in input value vector.

2.2 Neural network topology and training

Connecting two or more neurons together forms a
neural network. The topologies of bigger networks
may vary, but the most widely used topology is lay-
ered. Neurons are formed into layers, where first layer
serves as the input layer, last one serves as the out-
put layer and every layer in between them (hidden
layer) connects two surrounding layers together. The
example of this topology is illustrated in figure 3.

Now we have a neural network, but like it is with
human brain, in order to carry out a given task it must
learn how to do it. And as there are various methods to
teach people, there are also many learning algorithms
for teaching neural networks. The process of neural
network learning (or, in other words, approximating
the function required for the specific task) consists of
modifying the weights at each input of every neuron
in a way defined by a learning algorithm [3]. In this
project, the feed-forward back-propagation supervised
learning algorithm is used, other algorithms will not
be mentioned here. With supervised learning algo-
rithms, the expected result is required before the train-
ing process in addition to the input value vector. These
two elements together form a training set. When this
training set is given to the neural network, the input
value vector is “fed” to the neural network at the input
layer, and the information goes (only) forward through
the network (hence the feed-forward algorithm). The
output is collected from the output layer and used to
calculate the weight modifications and consequently
update all the weights. For example, one of the most
widely used error calculation functions is the cross
entropy error function:

—

E(S;v ):_

=

(In(di) = yi) ()

k=0

where:

o d is the k-th value from the expected output
vector and

e y; is the k-th value from the neural network out-
put vector.

The calculated error is then propagated back from
the output layer to the input layer through the neural
network by the back-propagation algorithm. Techni-
cally speaking, back-propagation calculates the gradi-
ent of the error of the network regarding the network’s
modifiable weights [4]. After this is done and the
weights are modified accordingly, the next training set
is used. All the training sets can be utilized multiple
times, depending on how well is the neural network
learning. Each training epoch includes going through
all the training sets and cross-validation sets. This pro-
cess continues as long as there is certain progress in
learning. When it finishes, the final weight values are
saved. The weight values are not modified any more,
and provided that training process went well, the neu-
ral network can be used for the task it was trained to
perform. The training itself can be viewed as a pre-
computation process, because it only runs once before
the actual usage. It is also vital to mention, that even
though the training is a very demanding task in terms
of computation due to the excessively high training set
count needed, the hardware and time requirements to
use a properly trained neural network are significantly
lower.

This section depicts the procedure of processing the
radar images, so they can be used for training and
evaluation. The images were taken by CHMI (Czech
Hydrometeorological Institute), and they use the data
from both Czech meteoradars. The example of such
image is in figure 4. Also, the definition of training set
form will be described, as the image processing aims
to transform image data into training sets.

3.1 Image processing - Feature extraction

Image data processing begins with cropping the im-
ages, to get rid of the irrelevant data. Next step is
specifying coordinates used for the creation of training
sets. Each pixel in the cropped image can be used,
as the training sets are going to be scrambled before
usage, therefore the neural network will see no cor-
relation between consecutive training sets given to it.
When the size of input vector area per image is cho-
sen (as written in 3.2), the cropped image is decoded
(as they are provided in a PNG palette-based format)



NO CELDN
paTA 111

sgagres &
C2RAD - 2: MAX - 01.03.2008 03:00 UT
CELDN - 01.03.2008 09:00 UT

FAIATELR STORMCHASING SOCIETY Meteo¥iewer w2.d1 by LukdS Ronge | Data - copyright (c) 2008 Fumetsat and CHMO

Figure 4. Radar image from 1. 3. 2008, 10:00 CET

and areas of every pixel are extracted from each im-
age. Next, these areas from consecutive images (in
time) are bound together by the coordinates they are
located in, forming sequences (for example, all the
areas with center in pixel at coordinates ”160,190” and
time 00:00, 00:10, 00:20, and so on form a sequence,
as shown in figure 5). From these sequences we can
create training sets, depending on the input vector and
expected output vector sizes.

3.2 Training set form

The goal is to predict precipitation for a specific place
in Czech republic. This place is represented by a pixel
in a radar image. Thus, we expect the neural network
to output the information about possible precipitation
in the short future. This prediction is based on the
previous front development, which can be extracted
from images from recent history. The input vectors
are constructed from the area of the target pixel from
several images in the recent history and the expected
result are only individual pixels taken from the images
after these in time, which were not seen by the neural
network. Together, these make an uniform pattern for
making training sets. There is still a lot of room for
different configurations of training sets. We can for
example use different sizes of areas surrounding the
target pixel. The larger the area, the bigger the neural
network has to be, training will be longer and there has
to be a higher count of training sets to train the neural
net properly. On the other hand, larger area gives us
more information to make a longer prediction.

To extend the amount of information in the used
areas, a compression algorithm is used. The DCT-11
algorithm (discrete cosine transform - type II) helps
compress information from a large area into a much
smaller space (the energy compaction property), and
even though it is a lossy transformation, it is still neces-
sary to make a longer prediction through a wider area

AT

]

Figure 5. This image illustrates, how individual
image parts are put together into an input value vector.
The reflectivity values from selected areas in each
image are extracted and concatenated together with
other images.

context while maintaining a sustainable neural net-
work size. This method is a Fourier-related transform
but opposed to DFT transform it does not work with
imaginary numbers. Also, the KL (Karhunen-Loéve)
transform provides very similar results but due to its
computational complexity and image dependency, the
DCT-II is considered a much better solution. This
transformation has another valuable property, and it
is, in addition to the energy compaction, the main dif-
ference between this paper and the paper written by
Lukas Putna [2]. It converts the discrete reflection
values from images (which represent the amount of
precipitation in specific areas) to real number coef-
ficients, smoothing the transition between reflection
levels in original image and therefore providing a more
acceptable input for the neural network.

Another variable in creating training sets is the
number of images used for a training set (both for the
input vector part and, to extend the prediction possibil-
ities, the expected result part). The input vector size
is being chosen experimentally. The expected result
vector is still kept small (up to 20 minutes), to calibrate
earliest predictions first.

At the time of writing this paper, the work is in the
early experimentation stage. The neural net is trained
on the images from the faculty database (these images



were taken by CHMI, as written in section 3), covering
7 full days with rain activity in images taken every 10
minutes. The configuration used for the training sets
and neural network was following:

e Input vector contains 5 consecutive image parts,

e ecvery part covers 7 x 7 pixel area,

e expected output vector contains a 10 and 20
minute prediction,

o this prediction is incorporated into 1 of 4 classes,
depending on the rain intensity of the prediction,

e cross-validation sets cover about 30% of all
training sets, the rest is used for training,

o neural network has two hidden layers with 50 or
200 neurons each,

e it uses softmax function to classify neural net-
work output into 4 classes.

So far, the model has thus been tested as a classifier.
With 4 classes of rain intensity, it has been successful
in making a precise prediction in approximately 73%
of all cases for earliest term prediction (10 minutes).
This number is expected to rise after proper experimen-
tal evaluation of different neural net and training set
configurations.

Table 1. Experiment results

Configuration Prediction success
Area size Hidden layer sizes \ 10 min 20 min
77 40,40 55% 40%
77 200,200 71% 65%
77 500,500 73% 68%

Even from the early experiments, it is clear that the
computational model of neural network is fit to be used
on rain prediction problem. Its specifics and configura-
tion are vital in the success rate of the forecast.

Neural network already in these early stages ex-
hibits 73% success rate in earliest image-based predic-
tions. As the experiments progress, the success rate is
expected to rise and longer predictions will be made.

This work is being developed to provide an inde-
pendent, robust and transparent solution for short-term
precipitation prediction. Its final prediction capabili-
ties are yet to be found in the next stages.

As the work shows a promising growth in success-
ful predictions as experimenting continues, it could be
deployed in the future into mobile application, using
the GPS and image feed to make immediate rain pre-
dictions and using the smartphone notification system
to warn of incoming fronts.

[1] BrainU, University of Minnesota Department
of Neuroscience and Department of Curricu-
lum and Instruction, About neurons [online],
http://brainu.org/files/tn_about_neurons.pdf, 2000-
2011 [cit. 2015-01-17].

[2] Lukas Putna, Rain prediction using meteo-radar,
Tech. report, Brno University of Technology, Fac-
ulty of Information Technology, 2009.

[3] Frank C. Keil Robert A. Wilson, The MIT ency-
clopedia of the cognitive sciences, The MIT Press,
2001.

[4] Pal J. Werbos, The roots of backpropagation:
From ordered derivatives to neural networks and
political forecasting, John Wiley & Sons, Inc.,
New York, 1994.

[5] M. Snorek, Neuronové sité a neuropocitace, first
ed., Prague, Czech Technical University in Prague,
1996.



	Introduction
	Artificial neural network
	Data preparation for training sets
	Experimenting with different configurations
	Conclusions
	References

