
20
15

http://excel.fit.vutbr.cz

Real-Time Long-Term Visual Object Tracking
Martin Simon*

0 x

y

0 x

y

0 x

y

0 t

Abstract
Visual object tracking with focus on occlusion, background clutter, image noise and unsteady
camera movements, those all in a long-term domain, remain unsolved despite the popularity it
experiences in recent years. This paper summarizes a related work which has been done in trackers
field and proposes an object tracking system focused on solving mentioned problems, especially the
occlusion, rough camera movements and the long-term task. Therefore, a system combined from
three parts is proposed here; the tracker, which is the core part, the detector, to re-initialize tracker
after a failure or an occlusion, and a system of adaptive learning to handle long-term task. The
tracker uses newly proposed approach of bidirectional tracking of points, which are generally weaker
then commonly used keypoints. Outputs of both the tracker and the detector are fused together and
the result is also used for the learning part. The proposed solution can handle mentioned problems
well and in some areas is even better then the state-of-the-art solutions.
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occlusion — rough camera movement

Supplementary Material: Demonstration Video
*xsimon14@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Despite the fact that a visual object tracking in video
has become a popular topic in recent days, it still
remains generally unsolved. There is a significant
amount of very efficient object tracking systems which
are sufficiently accurate and which work in real-time.
Unfortunately, many problems, such as occlusion, no
matter if full or partial, background clutter, noise or
unexpected rough camera movements, are problem-
atic parts of many recent visual object tracking related
projects and actually exclude them from daily profes-
sional usage.

In this work I would like to focus on recent solu-
tions in the field of tracking and try to build an object
tracking system whose efficiency and performance are

at least the same as the performance of the state-of-
the-art trackers. Also, I would like to improve some
critical parts which have serious impacts on accuracy
or are too narrowly focused and lack generality.

Further aim of this work is to bring a new challeng-
ing evaluation dataset with some highlighted problems,
which the standard trackers handle incorrectly. These
problems include primarily very small objects of in-
terest or very similar objects in comparison with the
background. The new tracking system should be de-
signed in the way to handle both the standard visual
object tracking evaluation dataset and the new chal-
lenging dataset, ideally without any significant speed
or accuracy reduction.

This paper is organized as follows. In section 2
related work is summarized. The section is further di-
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vided into a part describing current situation in objects
representations (Subsection 2.1), tracking approaches
are described in subsection 2.2 and the last subsec-
tion provides a short overview of complex tracking
solutions presented in recent days.

The core contribution of the paper is in section
3, where the main parts of the proposed solution are
described. The experiment is described in section 4,
which contains the evaluation as well. In the last sec-
tion (5) the results are interpreted and a conclusion is
given.

2. Related Work
A significant amount of work has been written recently
regarding the field of the object tracking in a video. In
this section, related parts of tracking based systems are
described.

2.1 Object Description
An object representation sets the apriori abilities of
every tracking system. The object representation is
a way how to treat the object model internally in the
system. The system abilities are highly correlated with
the type of the object representation.

Possibly the most straightforward way how to rep-
resent an object is to use a visual image template [1, 2].
The weakness of this representation can be an inability
to cover object appearance changes, which may occur
in case of tracking non-rigid objects or during tracking
for longer periods.

Another option to represent an object could be a
description with a set of good-to-track keypoints. The
term keypoint is commonly understood as a significant
point like corner or peak with its neighborhood. This
method is generally much better than templates, but the
quality of the keypoints is critical. There are various
widely used descriptors, such as [3, 4, 5, 6].

There are also some other object description meth-
ods, like contours [7], which is basically an object ge-
ometry, or complex object representations [8], which
combine other models together.

2.2 Localization Methods
Localization can be presented as the core of every
object tracking system. The used approaches can be di-
vided into two types; frame-to-frame (recursive) track-
ing and in-frame detection. The main difference is in
usage of history of object position.

In the frame-to-frame tracking the history is used.
It brings better handling of the missing information,
but the processing error can be cumulated over time.
On the other side, the in-frame detection does not

use the history and searches for the object in every
frame separately. The error cannot be cumulated, but it
cannot handle the missing information neither. There
is also less information in a single frame then in a
sequence of multiple frames.

The object detection is performed with a method
called sliding window, and it is widely used in many
trackers and detectors [9, 10, 11]. This is generally
a very slow approach, but the performance can be
improved by developing some kind of pyramid to dis-
card as many true negatives in early stages as possible
[10, 12, 13, 14].

The recursive tracking is an approach much related
to the object tracking. The reason is clear - the tracking
is performed on top of a sequence of frames and it
comes with higher density of information than single
image. If it is possible, it is a good approach to use
this kind of added information.

One way how to use this information is to model
object with its movement, very often in form of po-
sition and velocity. Then, the future object position
can be estimated and therefore the amount of possible
object positions is significantly reduced. This is used
in systems based on particle filters [15, 16] or optical
flow [1, 17], among others.

2.3 Complex Solutions
The tracking system parts described in previous section
are building blocks of complex tracking systems. Such
a complex long-term tracking system requires a tracker
for the basic tracking function, a detector for handling
situations when the object gets lost or the tracker has
failed, and some kind of learning system to handle
object appearance changes. This does not necessarily
require a presence of an object model [18], but the
adaptation needs to be present in some way.

A huge number of visual object trackers exists.
One often highlighted system is TLD [12, 19]. It is a
tracking system with sufficient tracking performance,
subtitled tracking-learning-detection. A tracking sys-
tem based on strong keypoints and their voting can be
CMT [20], which is considered a good representative
of key-point based trackers. Another tracker which is
good to mention is Struck [21], which is a tracker so-
lution with adaptive visual templates and online SVM
classifier. All of these trackers are considered state-of-
the-art.

3. Proposed Solution
The long-term tracking system proposed here is based
on OpenTLD [10], an improved C++ implementation
of TLD [12]. The main reason is that the TLD consists



of two main parts, the tracker and the detector, which is
improved with adaptive learning system. In OpenTLD,
there is more improvements, like breaking away from
the necessity of strong keypoints.

Therefore, the proposed solution is the OpenTLD
with a completely new tracker and a new system of
fusion of outputs of both the tracker and the detector.

The particular tracking problem to solve is defined
in 3.1. It directly leads into the object representation,
which is described in 3.2. The core contribution of this
paper, the bidirectional tracking proposal, is described
in 3.3. Finally, the results of the detector and the
tracker are fused in accordance with 3.4.

3.1 Problem Definition
The problem of visual object tracking in video se-
quence can be described as follows. The input of the
system is a sequence of monochromatic video frames.
The output can be generally a four dimensional vector
(x,y,w,h)t symbolizing the object position and the size
in every frame. The result can be also a zero vector, if
the object is not present in a particular frame.

The algorithm is commonly initialized by the user,
after marking the object with bounding rectangle. The
object is generally unknown to the system and this user
input is the very first information about the object.

So far the tracking is not different from the de-
tection of an object. The difference comes with the
usage of history of results to improve result in follow-
ing frames. Unfortunately, an error introduced in early
states leads to bigger error at the end, or eventually, a
failure during the process.

3.2 Object Representation
The tracking object can be generally anything which
exists in the real world. Therefore, every good object
tracking system needs to find a proper object represen-
tation with respect to other system parts.

The most promising seems to be keypoints model
described with usage of keypoints like [3, 4, 5, 6].
The advantages are that these keypoints are easily and
quickly found and even if some of them are lost (e.g.
due the partial occlusion), the rest can still represent
the object well. The disadvantage comes with a situa-
tion when we are not able to find such strong keypoints
on the object; that can happen e.g. due to a limited
object size or poor object resolution or contrast.

In the proposed solution the object is internally
treated in two different processes. According to that,
there are also two different object representations. Af-
ter the user sets the bounding box of the object, the
image pattern is stored also as a very first true pos-
itive sample for the detector. The pattern is resized

and normalized and stored in internal memory besides
the true negative, which are taken randomly from the
area in the same frame. The frames are marked as
true negatives in this initial learning phase if they are
disjunctive to the true positive one.

Much more interesting is the object representation
used during tracking phase. We propose to use 16
points in their 11× 11 neighborhood to describe the
object, and to choose these points according to their
quality to track [2]. As it was mentioned before, there
is a very limited set of such points in our dataset (small
object, poor resolution/contrast). Therefore, we select
those 16 best points which are possible to find. It is
highly expectable that the quality of the majority of
these points will be very poor.

One of the problems of visual object tracking is
called background clutter. It means that the back-
ground contains more information than the object it-
self and, hence, the best points will be chosen from
the background rather than from the object, what is
obviously a failure. To compensate this problem, a
mask of the object is computed before the points are
actually searched.

The mask represents generally a difference be-
tween the internal bounding box area and the bounding
box neighborhood. The mask value is calculated for
every single bounding box point. As it was outlined,
the value is a sum of weighted differences of the near-
est out-box regions. Each region size is set to 5× 5
pixels. This is illustrated in figure 1.
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Figure 1. Mask computation illustration. The
resulting value is given by a sum of weighted inverted
NCC between the point neighborhood and all four
nearest out-box regions

The figure 1 is described by equation 1. The sym-
bols are the same as in the figure 1. Symbols A, B,
C and D stand for the nearest out-box regions, the T
is a neighborhood of the point x, which is the point
of the mask. The function NCC(M,N) stands for the
normalized cross correlation and it is used to compute
the similarity/difference between the templates M and
N. The symbols a, b, c and d are distances of the



computed region T and corresponding out-box regions.
These distances are used to compute weights. The
symbols w and h represents the bounding box width,
resp. height.

p = NCC(T,A)∗ (1− (a/h)3)+

NCC(T,B)∗ (1− (b/w)3)+

NCC(T,C)∗ (1− (c/h)3)+

NCC(T,D)∗ (1− (d/w)3)

(1)

The mask can be seen in illustration 2. On the left
there is the original bounding box used to compute
the mask. On the right there is the mask. The white
color means the most different regions and therefore
the object.

Figure 2. Original bounding box and its mask. The
white color represents the most different areas

This mask is used to select points to track from the
object regions rather than from the background. The
points placed on the background can lead to serious
tracking error.

3.3 Multiple Bidirectional Tracking
Regarding the expected poor quality of points used
to track, it has to be improved in tracking process
itself. In [19] an approach called Forward-Backward
Error (FBE) is presented. This basically means that
every point is tracked in forward direction, the result
is tracked back and the distance between the original
point and the returned one is measured and called the
FBE. Points with too high FBE are then excluded from
the tracking process.

This idea brings very good results as it was proved
in [19]. Unfortunately, this only excludes wrongly
tracked points from the process, but does not improve
their individual quality.

In this paper is proposed an improved solution
based on multiple tracking in both directions. Ev-
ery point selected to tracking is tracked in forward
direction, which results in 2D histogram (a map) of
expected point positions in the next frame, which are
measured as the NCC between the original point area
and the tracking point area.

Instead of taking only the most valuable point to
track back, like it is in FBE, we track back 3 most

expected positions. As it was observed from experi-
ments, the correct tracking position is not always the
most valuable position in the map, but sometimes also
the second one or even the third one.

After tracking them back we take into account 2
best candidates of every backward tracking, so for
one tracking point we get 3 image candidates and 6
possible backward tracking images. For each of these
backtracked images a distance to the original position
is measured and the closest point is noted. The starting
point for the noted one is then marked as a result.
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Figure 3. Multiple Bidirectional Tracking (MBT).
Taking into account more candidates and tracking
them back brings higher chance to find successful
tracking path

The situation is better described with an image. In
figure 3 can be seen point at on the left part (frame in
time t) and three of its possible trackings to the frame
in time t + 1. Also, two possible trackings back for
every candidate to the original frame can be seen, with
some failing results and a successful one.

In the end, the successfully tracked points are
those, which end in the same point they came from,
with α as a spatial tolerance. Other points are excluded
as wrongly tracked, as is in the FBE.

3.4 Detector-Tracker Fusion
The detector is an integral part of a long-term tracking
system. It is the only way how to re-initialize tracking
process after full occlusion or tracker failure.

The detector used in the proposed solution is taken
from [10] unchanged. The detector is very fast, be-
cause it is developed with respect to cascade (or pyra-
midal) principles. The detector cascade consists of 3
stages. A Variance filter, which is the first stage with
straightforward task to reject as many false positives as
possible. The measurement metric is a simple variance.
The next stage is an Ensemble classifier. This classifier
uses method called random fern classification [22, 23].
The last stage and the slowest one is a template match-
ing with usage of NCC as the similarity measurement
technique.

With usage of both the detector and the tracker,
following rules can be set. If only the detector or the
tracker has result, its result is used. When neither the
tracker nor the detector has result, then the object is
considered as invisible.



In case both the tracker and the detector have their
results, then the detector’s output is used as an addition
to the tracker’s one in a fusion originally presented in
this paper. All the combinations are for better overview
in figure 4.

Are both
results valid?

Which result
is valid?

Detector-Tracker
Fusion

Final
Result

Yes

No

Tracker

Detector
None

Fused
result

Figure 4. If only one (the detector or the tracker) is
successful, its output is used. Otherwise, their outputs
are fused

The tracker’s and the detector’s output is a position
and a size of the object. Then, if the results overlap
with at least 40%, they can be fused. The fusion re-
sult is computed as weighted mean and the weight
is considered to be a certainty of the tracker and the
detector.

The detector’s certainty is computed in its last
stage as in equation 2. Then n ∈ negativesamples,
and p ∈ positivesamples.

dN = 1−max(NCC(T,ni))

dP = 1−max(NCC(T, pi))

a = dN/(dP +dN) (2)

The certainty of the tracker is set in accordance
with the detector’s one. It can be easily done with a
small hack; the tracker’s result put as an input for the
last stage of the detector to get the very same certainty,
only for the tracker this time.

The fused result position is illustrated in equations
3 and 4.

x =
at ∗ xt +ad ∗ xd

at +ad
(3)

y =
at ∗ yt +ad ∗ yd

at +ad
(4)

In the equations 3 and 4 the x and y are the fused
coordinates of the object center, the at and ad are the
certainties of the tracker and the detector. The xd , yd ,
xt and yt are original outputs from the detector and
from the tracker.

This kind of fusion should bring better movement
correction in case, e.g. the tracker drifts. On the other
hand, an additional error can be entered from the de-
tector, in case of false positives.

4. Experiment and Evaluation
This section consists of two main parts. In the first
part (Subsection 4.1), the experiment and evaluation
prerequisites are set, including the evaluation dataset.
The next part (Subsection 4.2) summarizes results of
the evaluation according to the experiment presented
in the first part.

4.1 Experiment Description
The dataset used for evaluation of the proposed track-
ing system consists of several standard video sequences
and a few new ones. The standard dataset is repre-
sented with sequences known as ball, bicycle, car and
jogging and it is taken from VOT2014 [24]. The subset
covers problems like object rotation (the ball), back-
ground clutter (the bicycle), object scale (the car) and
occlusion (jogging).

The originally obtained sequences have work ti-
tles helicopter and plane51. This dataset focuses on
small objects of interest (both), low contrast and poor
quality resolution (the helicopter), object appearance
changes (the plane51) and rough camera movements
(both). The plane51 consists from 923 frames and
the helicopter from 440 frames. The groundtruth was
annotated manually by marking objects’ centers.

In figure 5 can be seen representatives from all the
datasets. In the top line can be seen the representative
images from the standard dataset, in the bottom line
are representatives from the original one.

For every frame sequence the proposed tracking
solution is evaluated several times to get statistically
relevant result. The only result which is measured is a
position of the object center on a particular frame. The
success rate for every frame is measured according to
equation 5.

rate = 1−
√
(x2− x1)2 +(y2− y1)2−σ

γ−σ
(5)

The equation 5 says that the success rate for the par-
ticular frame is equal to complement to 1 of normalized
Euclidean distance between the correct center position
and the position the tracker gives. The equation also
contains boundaries due the manual groundtruth mark-
ing process. It says that the distances shorter than σ

(30 pixels) are considered as 100% correct, and longer
that γ (70 pixels) are considered as 100% incorrect.

Other long-term tracking solutions have been al-
ready mentioned in section 2.3. Only to summarize it,
the compared trackers are OpenTLD [10] and CMT
[20]. The reason is mainly that they are considered the
state-of-the-art. Another reason is that these trackers
have their reference implementation publicly available.



Figure 5. Dataset samples. From the left to the right they are: ball, bicycle, jogging, helicopter, car and plane51

4.2 Results
The proposed solution have been tested in quality do-
main as was mentioned in the previous subsection. In
table 1 are summarized evaluation results for system
without the mask computation nor the MBT, for both
improvements separately and a complete system. Ev-
ery results is combined from a mean of overall success
rate of all sequence frames together in several runs and
a standard deviation which symbolizes how unstable
the system is (how different the single overall results
were).

Table 1. Improvements results. Overall success rate
for particular improvement usage and standard
deviation. All values are percentages

None Mask MBT Complete

Ball 66 / 16 66 / 10 73 / 09 71 / 06
Bicycle 70 / 05 72 / 10 71 / 05 79 / 07
Car 73 / 09 79 / 11 78 / 10 79 / 14
Jogging 81 / 10 78 / 13 90 / 03 84 / 13
Helicopter 75 / 07 09 / 01 74 / 04 70 / 32
Plane51 87 / 02 85 / 01 87 / 02 85 / 02

The table shows how the proposed improvements
mostly bring an increase of performance in compari-
son with a system without these improvements. The
complete system is almost always better than the basic
one.

Table 2 sums success rates for every evaluation
dataset and the mentioned trackers to compare, and
also the results of system with all proposed improve-
ments. The overall success rate is again a mean from
several runs. The most significant numbers (both the
best and the worst) are highlighted.

Table 2. Evaluation results. Overall success rate and
standard deviation. All values are percentages

Our OpenTLD CMT

Ball 71 / 35 99 / 11 98 / 11
Bicycle 79 / 38 01 / 09 66 / 46
Car 79 / 36 64 / 48 62 / 48
Jogging 84 / 29 25 / 43 82 / 37
Helicopter 70 / 43 04 / 20 46 / 21
Plane51 85 / 33 08 / 27 04 / 17

According to the results, the proposed solution
performs better in our dataset. That was expected, as

the dataset contains some problematic parts that the
other solutions do not solve well. This was also the
main reason for the proposed solution.

In the standard dataset the quality performance of
the proposed solution is comparable to other solutions.
This is considered as a very good result; maybe even
better than overperforming the original dataset. It also
means that after the generalization to solve our dataset
the common performance was not disrupted.

Table 3. Speed evaluation. The M means that MBT is
applied, otherwise it is not. All values are means
across all datasets.

64 64/M 256 256/M/C OpenTLD CMT

fps 23.2 14.8 2.4 8.8 107.2 45.5

The computational speed is highly affected by an
allowed maximal object movement and a number of
backtracked points (usage of MBT). In table 3 are
shown average values for few configuration with added
average values of other trackers, to avoid dependency
on machine performance. The values stand for frames-
per-second (fps) and the proposed solutions is evalu-
ated with 64px and 256px as a maximal object move-
ment in all axis directions and by usage of MBT. It is
good to mention that the movement by 64px is gen-
erally much bigger than is needed and much bigger
than other solutions offer. The C symbolizes a partial
CUDA acceleration.

5. Conclusions
In this paper a long-term tracker was introduced. The
proposed solution is focused on some particular prob-
lems, like small object size and poor image contrast
quality. Beside these specific problems, the tracker per-
formance on standard dataset should not be decreased
and the tracker should not lose its generality.

As the evaluation showed, the proposed solution
overperformed state-of-the-art trackers in specific dataset.
On the standard dataset, our tracker performed compa-
rably to others.

The main contribution is the tracking quality mea-
surement called multiple bidirectional tracking. The
main idea of the method is to move tracking point
quality measurement into the tracking process itself.

The system was built on OpenTLD background



and therefore it took its structure; the tracker and the
detector cooperation. The cooperation was tied closely
by newly proposed Detector-Tracker Fusion.

The proposed solution is a general object tracker
prototype generalized to solve the new problems and
able to run in real-time, although it is slower then
other solutions. Hence, it can be improved in any
conceivable domain. Some of the first steps should be
more sophisticated online learning system.
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