
20
15

http://excel.fit.vutbr.cz

Multicopter collision avoidance system
Radim Hrazdil*

Abstract
There are a lot of people who like making models of planes, helicopters or multicopters, but not all of
them can actually fly them. This article presents (HW/SW) system that prevents user from crashing
into obstacles and provides convenient way to control any UAV (Unmanned Aerial Vehicle).
The main target are vehicles equipped with Robotic operating system (ROS), however the device is
designed to be easy to use for another platforms as well and because it is intended to be used on
aerial vehicles, it is also designed to be light, extensible and energy-efficient. To achieve this I used
ultrasonic sonars mounted on the UAV and connected to the Arduino.
This project results in sonar-based distance measurement device with collision avoidance system
ins ROS which is a starting point for further development of safety mechanisms and anti-crash user
interface, for example using fuzzy logic to avoid collisions.
Main contribution of this work is design and realization of a measuring device using Arduino for
controlling ultrasonic sensors. Thanks to Arduino, the device can be used independently on platform.
ROS packages can be used by other developers as a starting point for their projects.

Keywords: Multicopter — Quadcopter — UAV — ROS — Ultrasonic Sonar — Collision avoidance

Supplementary Material: Demonstration Video — Downloadable Code
*xhrazd13@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Multicopter market is growing quickly as multicopters
are becoming cheaper, smaller and more popular. Of
course, multirotor aircrafts would not be so popular
if there were no applications for them. Multicopters
proved themselves to be of a good use in many tasks –
aerial filmmaking, aerial photography, industrial over-
sight, package delivering, military surveillance and
many others.

But flying a multicopter is not that easy and it
takes hours and hours of training. If I could make
multicopters easier to fly, my solution could save a
significant amount of money for companies starting in
multicopter business who need to pay employees their

training hours.

During flight operation, pilots are normally lim-
ited in determining accurate position of their UAV and
objects around it. Cameras field-of-view may not be
sufficient to see obstacles from sides of the vehicle, so
unexpected gust of wind may result in crash. There is
also possibility of losing camera signal, when flying
out of reach. Flying without camera can be confusing
as well, because in most cases it is difficult to distin-
guish front from rear part. Another thing to consider
is flying in a space limited places like buildings, halls
or tunnels, which is not trivial task even for an expe-
rienced pilot. With our system installed, the pilot can
fully focus on the mission itself, rather than precise
flying.

http://excel.fit.vutbr.cz
http://youtu.be/S3msCdn3fNM
http://1drv.ms/1xSojEc
mailto:xhrazd13@stud.fit.vutbr.cz


Similar project was developed at the University of
Würzburg in Germany [1]. In this project 12 SRF02
ultrasonic sonars were installed around the quadcopter
to cover 360 degree circle. As a result, overlapping
beams of adjoining sensors allowed detecting obstacles
with higher resolution. One of the major issues of the
chosen sensor distribution was that ultrasonic sensors
disturb each other [2]. This had to be solved by divid-
ing sonars into three groups. However, disadvantage of
this solution is that not all the space around the quad-
copter is covered. Under certain circumstances, these
blind spots could cause problems. For reading sonar
measurements was used a separate microcontroller.

Collision avoidance module divides the space around
a quadcopter into three zones in each direction and its
behavior can be described as a finale state machine.
Each direction has a state that defines how fast the
quadcopter can move in that particular direction.

• State 1 – safe zone.
• State 2 – close zone.
• State 3 – dangerous zone.

In close zone, speed toward the obstacle is limited
depending on the current distance. After reaching
the dangerous zone, PID controller is activated. PID
controller ensures no further approach towards the
obstacle.

Experiments have shown that under good condi-
tions, which means straight surfaces around the quad-
copter, the system was capable of reproducing sur-
rounding environment with a deviation of just about
few centimeters. The system was also almost unaf-
fected by smoke, which would cause optical sensors
to fail. However, the system lacks on detecting soft or
foamed material.

In conclusion, to ensure maximum possible relia-
bility, multiple types of sensors must be used.

In this paper, I propose array of ultrasonic sonars
to cover as much space as possible with sufficient ac-
curacy of measuring surrounding obstacles. I focused
on achieving low hardware requirements, low weight
of the whole system (including wires, sonar holders,
etc) and fast response time.

The target is to mount up to 14 ultrasonic sonars
to create something like a protective shield around
the quadcopter. For reading sonars measurements, I
chose Arduino Micro, which is very small and light,
yet capable of powering up to 5 sonars at once.

Contribution of this project is hardware and soft-
ware design of a device, capable of measuring distance
to obstacles with frequency about 5Hz. Along with
the device, I developed modules for integration into
ROS framework, measuring algorithm for Arduino and

simple GUI application for sonar functionality check.
I assembled prototype of designed device (Its detailed
documentation is in progress) with weight less than
100g. As a power supply, USB is fully sufficient with
500mA limit. Thanks to Arduino, designed solution is
platform-independent and can be used for example on
light, small and relatively cheap Raspberry Pi.

This project has laid the groundwork for future
improvements and development – implementing fuzzy
logic controller or fusing sonar and visual odometry
data for better positioning.

2. Technologies

Robot Operating System
ROS is a framework for writing robot software

[3]. It is a collection of libraries, tools, utilities and
conventions with one aim – simplify development of
complex robot behavior across platforms. Software in
ROS is designed and developed as a collection of small,
mostly independent programs called nodes. All nodes
run at the same time and all nodes can communicate
with each other. The concept is very similar to object
oriented programming. Consider a group of nodes,
each working on very simple task, but they all together
solve some complex problem.
Ultrasonic sensor

Sonar measures distance by measuring time of
a 42kHz acoustic sound wave transmitted to and re-
flected from an obstacle. Therefore, as long as an
object is capable of reflecting sound, neither its color,
transparency or any other visual characteristics matters.
The minimum distance sonars can measure is about
30mm and maximum about 10m, but parameters of
each model are different.

For the developed application, I chose Maxbotix
MB1220 XL-MaxSonarr1. It offers the best balance
between wide or narrow beams and provides a good
balance between small and large target detection. It
also offers high noise tolerance, which is important
for UAV applications. Maximum range is 765cm and
minimum range is 20cm. Closer or farther distances
are reported as maximal, respectively minimal so there
is virtually no dead zone.
Arduino Micro

Arduino is an open-source electronics platform
based on easy-to-use hardware and software. Arduino
Micro board is based on the ATmega32u4, developed

1http://www.maxbotix.com/documents/
XL-MaxSonar-EZ_Datasheet.pdf

1http://www.atmel.com/Images/
Atmel-7766-8-bit-AVR-ATmega16U4-32U4_
Datasheet.pdf

http://www.maxbotix.com/documents/XL-MaxSonar-EZ_Datasheet.pdf
http://www.maxbotix.com/documents/XL-MaxSonar-EZ_Datasheet.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf


in conjunction with Adafruit. It offers 20 digital and 6
analog input/output pins, which is enough to connect
required number of sensors. Micro can be powered
via micro-USB, which is also very easy to use for
communication with computer thanks to built-in serial
library.

3. Hardware and Software Design
Sensor wiring

Because I want to be able to control up to 14 ul-
trasonic sensors, I have to design wiring that wouldn’t
require more pins than are available on the Arduino
Micro. At the same time, it has to allow as high refresh
rate as possible.

Two methods were combined to save pins and
achieve highest frequency rate – chaining and starting
multiple sensors at once. Chaining feature of Maxbotix
sonars allows to start only the first sonar. The follow-
ing sonar is started by the previous one after it finishes
ranging procedure. As front, rear and side sensors
shouldn’t disturb each other, I decided to start them
all at once and read their results from analog output,
which can be done very quickly.

Sensors are started by 20us pulse to the pin 4 (blue
and brown wires in the figure 1). Analog voltage out-
put from sensor is on pin 3 and pulse width represen-
tation is on pin 2 (green wires). Chaining is accom-
plished by connecting pin 5 of first sensor to pin 4 of
following sensor.

Figure 1. Sensor wiring diagram.

Sensor distribution affects two important param-
eters – refresh rate (because of potential disruptions)
and weight. I created a sensor beam model (figure
2) in Autodesk Autocad to visualize space covered
by sensors and based on the model, I designed sen-
sor distribution covering about 90% space around the
quadcopter. Author of the quadcopter model is Daniel
Lucena, who published it on GrabCad.com for free
use2. Model of quadcopter with mounted sensors is

2https://grabcad.com/library/
asctec-pelican-quadrotor-1

available in supplementary material.

Figure 2. Quadcopter and sonar beam model for
inspecting coverage and finding best sonar
distribution.

Application Architecture
Application package in ROS could composed of

three main nodes, as shown in the figure 3. One node
for reading data from Arduino, parsing it and pub-
lishing parsed data to a sonar data topic. The second
node for controlling the quadcopter, allowing to pub-
lish control commands to a special topic where they
can be modified instead of directly sending them to
fcu/control topic. For that purpose there is the last
node, which is subscribed to both topics and fuses sen-
sor data with user commands. Depending on sensor
readings it modifies user commands and these modi-
fied commands sends to fcu/control, which is a topic
for publishing control messages.

Arduino Data

Filter

User Commands

Fcu/control

Figure 3. Application nodes.

4. Implementation
Reading sensor data

Arduino Wiring language3 is quite simple and sim-
ilar to C. There is a function analogRead(pin) for read-
ing voltage on one of six analog pins. This function
implicitly maps input voltage between 0 and 5 volts
and returns an integer value, which in our case repre-
sents centimeters. For reading pulse width on digital
pins, there is a function pulseIn(pin, value), where
value is the type of the pulse to read, either HIGH
or LOW. The function returns length of the pulse in

3http://arduino.cc/en/reference/homePage

https://grabcad.com/library/asctec-pelican-quadrotor-1
https://grabcad.com/library/asctec-pelican-quadrotor-1
http://arduino.cc/en/reference/homePage


Measured distance Digital result Analog result
20 25 19
50 62 44
80 100 71

110 139 98
140 178 126
170 217 156
190 243 174

Table 1. Table of analog and digital measurements
before any calibration.

microseconds, so I need to divide the returned value
by 584 to convert it to centimeters.
Calibration

After conducting several experiments, it turned out
results obtained by analog and digital readings differ
very significantly and neither of them are accurate.
A set of 20 measurements was taken by analog and
digital reading and entered into a table. From the table
1 is obvious that without any calibration, this system
would be hardly usable.

Linear error is possible to model by simple linear
equation 1, where y is desired correct distance, x is
measured distance and a, b are real numbers.

y = ax+b (1)

From graph in the figure 4 is obvious that the error
is linearly dependent on measured distance and there-
fore with measured values I can calculate coefficients
a, b for both digital and analog function. For calculat-
ing mentioned parameters I used linear regression to
calculate slope of the analog and digital function.

Figure 4. Graph representing error of measured
values by digital and analog reading.

With known slope, I get coefficients a, b and I can
derive inverse functions, to get the final expression for
calculating the calibrated range.

For an example, lets assume measuring from dig-
itally connected sensor. The sensor reports distance

4http://www.maxbotix.com/articles/033.htm

Parameter a Parameter b
Digital 1.2811 1.3286
Analog 0.9127 1.0857

Table 2. Table of calculated coefficients for reading
correction.

100cm.

y =
100+1.3286

1.2811
.
= 79.1 (2)

The result of equation 2 corresponds with value 80
from the table 1, which is the distance we actually
measured. As sensors have resolution of 1cm, I con-
sider this result to be accurate.

During experiments I observed certain instability
between individual measurements. Arduino was read-
ing accurate values but in one of few cases, it returned
number bigger than the operational range of the sensor.
Most probable cause of this issue were voltage drops,
because in my design, four sensors are initiated at the
same time. Each sonar has a current peak 100mA. To
avoid voltage drops, I need low-pass filter [4], that
would eliminate high frequency noise. One simple
low-pass filter consists of a resistor in series with the
load and a capacitor in parallel with the load. Parame-
ters recommended by Maxbotix5 are 10Ω resistor and
100uF capacitor.

Figure 5. Soldered capacitor on sensor and in heat
shrink tube.

ROS Nodes
ArduinoIO, a node for reading Arduino messages,

reads data from USB port (/dev/ttyACM0) in a cy-
cle, while roscore is up and running. When the node
successfully reads a string of data from Arduino, it
parses it and for each individual measurement pub-
lishes message containing two integers – sensor num-
ber and the measured distance. Messages are published
on sonar data topic.

For controlling quadcopter with keyboard, I used
node written by Adam Crha 6, but redirected messages
to be published on keyboard control.

The most important node is the Filter. It is sub-
scribed to both topics, sonar data and keyboard control.

5http://www.maxbotix.com/images/
XL-Filter.jpg

6http://merlin.fit.vutbr.cz/wiki/index.
php/Beran-Crha

http://www.maxbotix.com/articles/033.htm
http://www.maxbotix.com/images/XL-Filter.jpg
http://www.maxbotix.com/images/XL-Filter.jpg
http://merlin.fit.vutbr.cz/wiki/index.php/Beran-Crha
http://merlin.fit.vutbr.cz/wiki/index.php/Beran-Crha


When a new message comes from sonar data, it up-
dates the distance in direction defined by the sonar
number. Also updates the state of this direction de-
pending on the reported distance. When a new mes-
sage comes from keyboard control, speed is lowered
based on the state of the desired direction.

5. Conclusions
This paper described hardware and software design
of a measuring device and implementation of an anti-
crash package for Robotic operating system.

Designed device can control up to 14 sensors with
high frequency of measuring. Under good conditions,
sensors can measure with deviation 1cm. Achieved
coverage of space around the UAV is about 90%.

The main contribution of this work is design and
realization of a measuring device using Arduino for
controlling sensors. Thanks to Arduino, the device can
be used independently on platform. I implemented of
an anti-crash package for the most widespread robot
programming framework nowadays – ROS.

The anti-crash package works independently on
the type of used sensors, so if any other team wants
to start developing with optical type of sensors, they
can use this package as a starting point to speed up the
development.

In the future, I am going to implement advanced
controller for positioning the UAV utilizing PID con-
troller or a fuzzy regulator, which would allow to set
parameters like weight or speed for specific model.

Acknowledgements

The author thanks Ing. Vı́tězslav Beran, Ph.D. for his
supervision and guidance.

References
[1] Sergio Montenegro Nils Gageik, Thilo Müller.

Obstacle detection and collision avoidance
using ultrasonic distance sensors foranau-
tonomous quadrocopter. Technical report,
University of Würzburg, Aerospace Infor-
mation Technology(Germany), September
2012. [Online; Accessed 03-April-2015].
Available at http://www8.informatik.
uni-wuerzburg.de/fileadmin/
10030800/user_upload/quadcopter/
Paper/Gageik_Mueller_Montenegro_
2012_OBSTACLE_DETECTION_AND_
COLLISION_AVOIDANCE_USING_
ULTRASONIC_DISTANCE_SENSORS_FOR_
AN_AUTONOMOUS_QUADROCOPTER.pdf.

[2] Bob Gross. Maxsonar operation on a multi-
copter. online, February 2013. [Online; Accessed
03-April-2015]. Available at http://www.
maxbotix.com/articles/067.htm.

[3] Jason M. O’Kane. A Gentle Introduction
to ROS. Independently published, October
2013. Available at http://www.cse.sc.
edu/˜jokane/agitr/.

[4] Wikipedia. Low-pass filter — Wikipedia,
the free encyclopedia, 2013. [Online;
accessed 01-April-2015]. Available at
http://http://en.wikipedia.org/
wiki/Low-pass_filter.

http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www8.informatik.uni-wuerzburg.de/fileadmin/10030800/user_upload/quadcopter/Paper/Gageik_Mueller_Montenegro_2012_OBSTACLE_DETECTION_AND_COLLISION_AVOIDANCE_USING_ULTRASONIC_DISTANCE_SENSORS_FOR_AN_AUTONOMOUS_QUADROCOPTER.pdf
http://www.maxbotix.com/articles/067.htm
http://www.maxbotix.com/articles/067.htm
http://www.cse.sc.edu/~jokane/agitr/
http://www.cse.sc.edu/~jokane/agitr/
http://http://en.wikipedia.org/wiki/Low-pass_filter
http://http://en.wikipedia.org/wiki/Low-pass_filter

	Introduction
	Technologies
	Hardware and Software Design
	Implementation
	Conclusions
	References

