De-Ghosting Methods

There are already a lot of de-ghosting algorithms that have been developed in the last decade. The following table shows the classification of these algorithms which is based on a few parameters:

- **Fusion domain** - radiance or image
- **Number of exposures needed for good results of the algorithm**
- **Ghost map detection** - if ghost map detection is first computed and number of ghost maps - one or more using one exposure as a reference image
- **Thresholds tuning** - some input parameters such as a threshold value has to be set automatically or manually, respectively
- **Reference image selection** - if one of the input images is used as a reference
- **Final result with an occurrence of moving object at fixed position or removal of all moving objects**

Methods marked by an asterisk follow all desired requirements for the real-time HDR FPGA video camera.

Fusion in the radiance domain

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>×</td>
<td>×</td>
<td>X</td>
<td>X</td>
<td>×</td>
<td>×</td>
<td>X</td>
<td>X</td>
<td>×</td>
</tr>
</tbody>
</table>

Fusion in the image domain

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The following methods are selected from the existing de-ghosting algorithms as the appropriate solutions for the real-time HDR FPGA video camera.

Histogram Based Algorithm

Fusion in the radiance domain

Bitmap Movement Detection

Fusion in the image domain