BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Randomly Sparsed Recurrent Neural Networks in

Language Modeling

Karel Benes*

Abstract

The models based on recurrent neural networks are the current state of the art method in statistical
language modeling. Despite the recent major advances, the task of training a well performing
network is still difficult. This work investigates performance of recurrent network with tightly
constrained weight matrix, where a large portion of randomly picked recurrent weights is forced to
be zero. The effect of decreasing the number of parameters on the performance of the model is
studied. Additionaly, the model combinations are investigated. Although the proposed architecture
did not achieve any improvement over the baseline model, the combination of the sparse models
performs better than the combination of fully connected RNNs.

Keywords: Sparse weights matrix — Recurrent neural network — Statistical language modeling

Supplementary Material: Downloadable Code

*xbenes20@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

The statistical modeling is a problem of finding such
a model, which would assign high probabilities to sen-
tences which are frequent in a given natural language,
while the sentences that are rare or plain invalid are as-
signed low probability. A high quality language model
is an important part of systems for automatic speech
recognition or text compression algorithms.

Since their introduction [1] to the field of statisti-
cal language modeling, the recurrent neural networks
(RNN) have been defining the state of the art. On top
of the original architecture, substantial improvements
have been reached by using more complex architec-
tures, such as Long Short-Term Memory [2]. On the
other hand, a recent work by Mikolov et al. [3] sug-
gests, that improvements of similar magnitude may be
obtained by much simpler techniques.

At the same time, also a more theoretically moti-
vated work appeared [4], advocating the sparse initial-
ization of the recurrent weights.

In this paper, a rather practically formulated ap-
proach to enforcing the sparsity is studied.

To compare performance of different models, the
per-word entropy is used. Let w; denote the i-th word
and w? the sequence of words wywy,1...w;, and let
the probability p(current word |history) be defined by
the examined model. Then the per-word entropy of
a given text is defined as:

1Y :
per-word entropy = N Z log, p(w,-|w’fl) (0
i=1

The per-word entropy relates directly to the num-
ber of bits needed to store the test sentence, if we
use the given model for compression. The lower —the
better.

Let the x, denote the input vector at time ¢ and let y;
be the output vector at time #, regardless of the specific
architecture of the language model. The input vector
is word w; encoded as 1-of-K. Similarly, the expected
output is the word w, 1, encoded as 1-of-K. The actual
output of the network is a vector of probabilities which
sums up to one.

http://excel.fit.vutbr.cz
http://www.stud.fit.vutbr.cz/~xbenes20/
mailto:xbenes20@fit.vutbr.cz

Xt — — Yt

Z_l

Figure 1. Diagram of a Simple Recurrent Network.
The z~! block represents a one timestep delay. This
was the first recurrent neural network model
introduced into language modeling. The work
presented in this paper is based directly on it.

The simple recurrent network (SRN) [5] is defined
by these two equations:

h, = 6(Ux, + Wh,_;))

y; = softmax(Vh,) 3)

Here, the h, is a compact representation of his-
tory, including the current word. Matrix W holds the
recurrent weights —this paper deals with altering it.

The enhanced Structurally Constrained Recurrent
Network model of Mikolov et al. adds neurons dedi-
cated to preserving longer-time memory:

S = (1 - OC)BXt + (XS;_l (4)
ht = G(UX,‘ + Whtfl +Pst) (5)
y; = softmax(V,h, + Vs;) 6)

With a € (0;1), the ”slower” neurons s; represent
an exponentially decaying sum of all previous words,
as projected by matrix B.

The recurrent computation of 4, s; may be viewed
as a projection by a single matrix R. Matrix R has
large parts set to zero, as illustrated in Eq. (7). Hence
the name Structurally Constrained RNN. At this point,
it is necessary to point out that in this approach, the
hidden layer is not processed uniformly, as the logis-
tic sigmoid nonlinearity is applied only to the “fast”

neurons.
W| P
k=0 far] Y

There are other points of view advocating sparse-
ness of the recurrent matrix:

So called Echo State Networks (ESN) have been
shown to predict timeseries quite well [6]. An ESN is
an RNN, where the input and recurrent connections are
fixed, only the output weights are learned. Moreover,
the recurrent weights are fixed as sparse, e.g. only 15

input connections for every neuron in a hidden layer
wide several hundreds of neurons.

In their recent paper, Sutskever et al. have stud-
ied [4] the impact of different random initialization of
the recurrent weights on the behaviour of the network.
They have approached the problem from the ESN and
suggested that initializing the network’s recurrent con-
nections as sparse helps to learn the longer-term de-
pendencies.

Yoshua Bengio et al. promote a different approach,
forcing the activations to be sparse [7]. They do so
by using rectified linear units as nonlinearities and
applying an L1 regularization on the activations. This
allowed them to obtain an improvement over an RNN
enhanced by neurons acting as leaky integrators.

I take the Simple Recurrent Network as a baseline
and change the computation of the hidden state, i.e.
replacing the Equation (2) with (8).

h, = 6(Ux, + (W,, ©W)h,_,) ®)

The © represents element-wise product, also known
as Hadamard or Schur product. In (8), I introduce the
mask W, of the recurrent weights matrix W. The
mask is a square matrix of same the shape as W and
(Wm;;) € {0,1}. Thus, the product W,, © W forces
some of the weights in W to be zero.

It can also be viewed as an ESN with non-zero
weights turned learnable, or a sparsely initialized RNN,
where the initial sparsity constraints have been kept
throughout the training.

In the scope of this paper, I investigate the be-
haviour of such networks, that have the mask W,,
fixed. Therefore, the W, is not a learnable parameter
of the model, unlike W. During the experiments, the
elements of the mask are sampled from a Bernoulli
distribution. The parameter p of the distribution is a
tunable hyper-parameter. Also, this hyper-parameter
can be interpreted as the density of the mask.

I call the resulting model a Randomly Sparsed
Recurrent Neural Network (RS-RNN).

In order to allow the neurons to remember their
individual values, the diagonal of the mask is always
set to one, increasing slightly the overall density of the
mask.

3.1 Implementation

The computational model is implemented using the
Theano toolkit [8] [9]. For learning of the parameters,

more than N years
we have no useful information

refund at N N </s> commonwealth

ago researchers reported </s> the
on whether users are at

edison now faces the additional

asbestos fiber <unk> is unusually <unk> once it
risk said james a. <unk> of boston
<unk> refund on its <unk> rate

Figure 2. Multistream learning with 3 parallel streams. Red words are the targets, green words are the current
input. Backpropagation through time is done over the five dark blue words, the light blue words only affect the
current learning step by being encoded in the hidden state of the network.

I used the stochastic gradient descent with backpropa-
gation through time (BPTT).

I have implemented the multistream learning. In
this learning scheme, illustrated in Figure 2, there are
more floating windows on the training corpus and error
is computed simultaneously on all of them. In the pre-
liminary experiments, I found out that using more than
4 streams for the training hurts the performance. This
can be explained by the significant decrease of num-
ber of updates per epoch. Therefore, only 4 stream are
used for training of networks in following experiments.

As usual with the experiments involving random
initialization, the implementation contains the seed,
which is used for random number generation. It has
two separate seeds: one for the mask and the other for
the weights.

The weights are updated once every 30 forward
steps. While the error from the last words of these
sequences is propagated over whole these sequences,
a BPTT over 5 timesteps is guaranteed even for the first
word. This is achieved by overlapping the sequences.

I do not use any form of hierarchical softmax for
computing the output.

Penn Treebank corpus (PTB) is a subset of the Wall
Street Journal corpus'. It has been hand-annotated
for grammar categories at University of Pennsylvania,
thus its name. For PTB, there is a vast comparative
publication available [10].

There is also a widely used preprocessed version?,
where the vocabulary is reduced to 9999 most common
words and the rest is replaced by an <unk> token.

The widely used version of PTB is divided into
three parts: Training set consists of approx. 890 thou-
sands tokens in approx. 42 000 sentences. Validation
subset consists of approx. 70 000 tokens in 3370 sen-
tences. Similarly, the test set contains approx. 79 000
tokens in approx. 3700 sentences.

The SRN architecture with respective number of

ILDC item number LDC99T42, https://catalog.ldc.
upenn.edu/LDCY99T42

2http://www.fit.vutbr.cz/~imikolov/rnnlm/
simple-examples.tgz

hidden units is taken as the baseline. The experiments
are aimed at performance of the network with respect
to the density of the random mask. Results of the first
set of experiments are captured in Figure 3a. Since
there is principally more randomness in the RS-RNN
than in a regular RNN, I run every experiment 9 times,
using 3 different seeds for sampling the mask and 3
for sampling the weights.

The results show several findings: With sparser
mask, the difference between performance on training
and validation/test sets increases. The improvement
on the training set is of greater magnitude than the
decrease on unseen data, but the variation of the perfor-
mance of models with different random initializations
increases as well. Overall, the decrease of performance
on unseen data is rather small, given we reduce the
number of recurrent connections down to 20 %.

Next, scaling of the RS-RNN is examined. For
this, twice as big hidden layer was used, i.e. it had 200
hidden units. Again, nine experiments with different
random seeds are conducted for each density of the
random mask, results are captured in Figure 3b.

The overall behaviour of RS-RNN with respect to
the density of random mask is intact with wider hidden
layer. However, the differences emerging from differ-
ent density are of a greater magnitude. The results for
each density are more variable as well.

4.1 Interpolation of several models

It follows from the initial experiments, that the RS-
RNNSs tend to improve on the training set as the density
of the random mask drops. So I next examined how
do these models combine. I used the simple linear
interpolation with no weighting:

=

1
pwi|pi) = pilwipih))

N;

I
-

I have compared the interpolation of nine models
to the average of their individual errors, as show in Fig-
ure 4. It is apparent that the interpolation of models of
same architecture provides a significant improvement
over using these models separately. This is already
a well known result.

A novel observation lies in the gain from interpola-
tion as conditioned on density of the mask. Trivial fact

https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

X 3¢
X0 X

6.5 b

Per-word entropy in bits

I I
0.2 0.4 0.6 0.8 1

Density of the random mask

) Networks with 100 hidden u

Figure 3. A gasw performance overview o models with dlfferent ensity o

x
K
xx

X0

6.5 X - - .

Per-word entropy in bits

I I
0.2 0.4 0.6 0.8 1

Density of the random mask

1th 200 en
C mask

nits.

etwork
or every examined

density, nine experiments with different seeds were performed. The networks with den51ty 1 are equivalent to
a regular SRN. The error reported as Training —dynamic” is obtained by accumulating the errors during
training, i.e. when the network is adapting its weights to the text. Rest of the statistics is computed without any

adaptation.

Table 1. Per-word entropy of the posterior
combination of 9 models, as dependent on density of
the random mask. All models have 200 hidden
neurons.

Density of the random mask

Dataset 02 04 06 08 1
Average

Validation 7.46 7.42 7.40 7.39 7.38
Test 7.35 7.32 7.30 7.28 7.28
Interpolation

Validation 7.10 7.08 7.09 7.07 7.14
Test 7.00 6.99 6.99 6.97 7.05

is, that the gain increases as the average performance
of sparser models is slightly worse. However, it is con-
sistent over both model sizes investigated, that it sig-
nificantly helps to interpolate at least slightly sparsed
models.

It is likely, that the RS-RNN models combine bet-
ter because having less parameters, they are forced to
focus on a subset of features in the text. And since the
subset is randomly picked, it is likely that more such
subsets will be complementary. It remains to discover,
why the significance of the effect is not increasing as
the mask is getting sparser.

In this work, I have proposed the Randomly Sparsed
Recurrent Neural Network architecture and studied its
basic performance properties. The proposed model
is a logical continuation of several independently de-
signed language models based on RNNS.

Making the recurrent weights sparse brings little
harm on validation error, while it helps the model to
learn the training corpus. This is counter-intuitive, as

we usually observe precise opposite when decreasing
the number of parameters. On the other hand, the
RS-RNN has been shown to have greater potential for
model combination than the dense SRN architecture.

A continuation of the work is to examine similar
approach to make the word embeddings sparse and
finally making these two work together. The presented
work is a part of my diploma thesis.

I would like to thank my supervisor Mirko Hannemann
for his help.

[1] Tomas Mikolov. Statistical Language Models
Based on Neural Networks. PhD thesis, 2012.

Martin Sundermeyer, Ralf Schliiter, and Her-
mann Ney. LSTM neural networks for language
modeling. In Interspeech, pages 194-197, Port-
land, OR, USA, September 2012.

Tomas Mikolov, Armand Joulin, Sumit Chopra,
Michaél Mathieu, and Marc’ Aurelio Ranzato.
Learning longer memory in recurrent neural net-
works. CoRR, abs/1412.7753, 2014.

Ilya Sutskever, James Martens, George Dahl, and
Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning.

(2]

[4]

[5]

Jeffrey L. Elman. Finding Structure in Time.
COGNITIVE SCIENCE, 14(2):179-211, 1990.

Herbert Jaeger. Adaptive nonlinear system iden-
tification with echo state networks. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances
in Neural Information Processing Systems 15,
pages 609—616. MIT Press, 2003.

[6]

Valid - average
76 1 \m::q - 76 7

2 e Test— 2

8 8

B 74p . B 74p .

z o— iz [co—

=3 o——wo— o =% —

g —o— —o é - DR

8 72 . 8 72 .

] k]

= _x =

S - o

E IV — =

id — e — id -

5 7k - £ T o B
68 Il Il Il Il Il 68 Il Il Il Il Il

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Density of the random mask Density of the random mask

. a) Networks.with 100 hidden units. . . . (b) Networks. with 200 hi nits.
Figure 4. Co(rrgpaﬁs%n of linear 1ntérp0 ation of nine model w1tﬁ1)samewarc itecture an%?(cjifl:?fgrént random

initializations to the averaging of their individual performance.

[7] Y. Bengio, N. Boulanger-Lewandowski, and
R. Pascanu. Advances in Optimizing Recurrent
Networks. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Con-
ference on, pages 8624-8628, May 2013.

[8] Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, James Bergstra, lan J. Goodfellow, Arnaud
Bergeron, Nicolas Bouchard, and Yoshua Bengio.
Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learn-
ing NIPS 2012 Workshop, 2012.

[9] James Bergstra, Olivier Breuleux, Frédéric
Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: a CPU and
GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Confer-
ence (SciPy), June 2010. Oral Presentation.

[10] Tomas Mikolov, Anoop Deoras, Stefan Kom-
brink, Lukas Burget, and Jan Honza Cernocky.
Empirical evaluation and combination of ad-
vanced language modeling techniques. In In-
terspeech. ISCA, August 2011.

	Introduction
	Previous Work related to the Sparsity of the Recurrent Weights Matrix
	Studied Architecture of Randomly Sparsed Recurrent Neural Network
	Performance on the Penn Treebank Corpus
	Conclusions
	References

