
http://excel.fit.vutbr.cz

Business Process Representation as RESTful
Resources
Alena Chernikava*

Abstract
Almost every company in the world deals with business processes on a daily basis. And business
can derive significant benefits from taking a formal approach. This means, that the business process
is formally described (for example using Business Process Modeling Notation 2.0) and implemented
in some Business Process Engine (BPE) . BPEs have a limitation: they do not provide a possibility
to change some ”part” of the process on the fly. So, all business processes are designed in a linear
way and are not flexible. In order to change the business process, you need to hire a specialist, who
will analyze and implement your requirement, stop the factory, reload the new business process
and start the factory again. Usually factories are so tied to the current BPE that it is too expensive
to adopt new technologies or to change the currently used BPE for another one. The aim of this
paper is to design a general flexible RESTful API which provides more flexibility to the processes
and is not so tied to the one concrete BPE, but makes possible to benefit from using many of them.

Keywords: REST, workflow, business process, RAML

Supplementary Material: RESTful API description using RAML

*, Faculty of Information Technology, Brno University of Technology

1. Introduction

In this paper, we provide a general description of
RESTful API for business process engines (BPE; also
known as workflow management systems), software
frameworks for execution and maintenance of process
workflows. Contrary to state-of-the-art approaches,
the approach presented in this paper allows to change
business processes on the fly (to enable dynamic busi-
ness processes executions), to execute non-linear and
context-aware processes (the processes that permit
different executions based on their context, such as
currently available resources), and to easily switch
and integrate several underlying BPE platforms to ef-
ficiently execute and maintain complex business pro-
cesses decoupled on several components in distributed
environments.

Each company in the world wants to overcome
its competitors and one of the ways for an efficiency
improvement is to optimize company’s business pro-
cesses. A business process (BP) is a collection of
related, structured activities that produce a specific

service or product for customers. The business can de-
rive significant benefits from taking a formal approach.
This approach consists in a formal description of the
BP using the well-known common tools (e.g. BPMN
2.0 notation [1]) and its implementation using some
BPE (e.g. Bonitasoft).

Every BPE is a comprehensive application incap-
sulating a big variety of different tools and even though
there are some limitations. For example there is no
easy way to change some ”part” of the BP on the fly.
That is why all BPs should be completely described
and all possible required variations should be included.
Even though we cannot foresee all possible variations,
and some flexibility would be very useful. Usually fac-
tories are so tied to the BPE, that it is too expensive to
adopt new technologies or to change the current BPE
for another one. There is a need to have one more ab-
straction level that should hide some low level details
and provide an opportunity to change BPE at minimal
cost.

What can inspire people more than a success of

http://excel.fit.vutbr.cz
https://github.com/malanka/honeybee
mailto:alena.chernikava@gmail.com


some idea or its implementation? For example we can
say, that the The World Wide Web fulfills the REST
principles [2]. Everybody knowns, that WWW is a
highly scalable, flexible, distributed computing plat-
form. And its great success drives efforts of applying
REST principles in Business Process Modeling (BMP).
One important research paper about REST-style work-
flows is [3] where every activity is represented by a re-
source (activity-centric modeling paradigm). However,
the main problem of direct applying of REST princi-
ples to BPM is an unmanageable explosion of number
of resources in a process. Another approach but with
information-centric modeling paradigm was taken in
[4]. Authors managed to eliminate the problem of
large number of resources, but introduced another not
obvious one. There is an inconsistency between a vi-
sual representation of the BP (it is still activity-centric
BPMN) and the way of controlling the business pro-
cess (information-centric). We are going to take com-
pletely different approach. As a resource we will rep-
resent a business process with its variations and allow
users to use BPMN.

A delay in the business process can be a cause
of a big financial loss, so it is critically important to
be able to adjust the running BP current conditions.
Some attempts in [5],[6] where done, but they both
require big changes and do not allow to ”reuse” already
modeled BPs. In order to fulfill the business needs we
provide a description of a general RESTful API that
allows to adopt the running BP on the fly to the current
situation without an expensive total redesign of the BP
and that provides one more abstraction layer.

Let us start from a BP representation. Under the
BP we understand a BP designed in a special way
by means of one existing BPE. Therefore, for us this
is a black box (we are not aware about all internal
details), but we are aware that there is some missing
information which we call a (hole) (Figure 1).

This means that the process itself is almost deter-
mined but some components are variable (and this is
already known at the early stage of the modeling). It is
important to admit, that even if a component is variable,
it should satisfy some known boundary conditions.

In order to create an additional abstraction layer
we need to introduce a template of the process, a pat-
tern of the process (a filled template) and an instance
of the process. A pattern represents a ready to use
model of the process therefore it saves operator’s time,
because he can use preselected variable components.
This structure allows to generate BPs from their ab-
stract definitions and provides enough flexibility for
distributing the process across different BPEs.

The main contribution of our approach is the ability
to implement dynamic business processes executions
and, in general, to improve scalability and reliability
of the business process engines maintaining the execu-
tions or their parts in distributed environments.

2. BPM and BPE
It is important to understand what BPEs are responsi-
ble for and what are the benefits from using them. A
formalization of a BP is a way to enforce a control of
BP implementation in a company and also allows to ap-
ply the same approach everywhere across the company.
This leads to a cost reduction of the BP implementation
and provides an easy way for the BP optimization.

A formal model breaks each BP into tasks, pro-
viding a way to see how well they are designed and
performed. Also in the formal model should be de-
scribed an order of task invocation, conditions under
which tasks must be invoked, task synchronization and
a dataflow.

The formalization of the BP starts with its model.
A Business Process Modeling (BPM) is the activity
of representing processes of an enterprise in a graph-
like structure that is easy to visualize [7]. Such visual
models are used to share a great deal of information
(the internal details about the business process) with a
wide variety of audiences (business analysts, project
managers, usual employees, factory engineers and etc).
Without a standard modeling technique, it is impossi-
ble to use BPM. So, the Object Management Group
(OMG) has developed a standard called Business Pro-
cess Model and Notation (BPMN).

The main goal of BPMN is to provide an intuitive
and simple way to describe, model, implement and
use various BPs. It is important, that BPMN provides
a visualization of business oriented notions through
the graphical elements (Events, Activities, Gateways,
Data, Messages, Sequence and Message Flows etc).

The key to success of the company is to manage its
BPs in a right way. Since late 1970s there have been
developed a big variety of Workflow Management Sys-
tems (WFMSs) or Business Process Engines (BPEs).
The systems, that provide an ability to model, report
on, execute and dynamically control BPs involving
humans and automated systems.

3. REST Architectural Style
We are already familiar with the problem and we can
start with a solution that is going to be designed ac-
cording the REST architectural style. In this chapter
we introduce REST and shortly describe its basic idea
and some of its principals.



Figure 1. Visualization of the black box and hole idea.

REST states for Representational State Transfer
and was designed in 2000 by Roy Thomas Fielding for
distributed hypermedia systems [8]. The REST archi-
tectural style is not a standard, is not a protocol and is
not an architecture. It is just a set of recommendations
or principals. The REST principles are general and it
is possible to apply them in different areas, but they
found their main appliance at a web service and API
design.

The basic idea is to define a list of entities and their
representations. Each operation is a manipulation with
an entity instance with help of a defined list of oper-
ations that could be performed under this particular
entity.

The fundamental principle is a usage of a client-
server communication pattern. Under the stateless
principle we understand that a request sent to a server
must contain all necessary information for its process-
ing. The uniform interface principle states that be-
tween a client and a server a communication contract
should be established. This contract consists of four
conditions:

Resource Identification Every resource in the sys-
tem should have a unique identifier (URI).

Manipulation with Resource A representation of the
resource is sufficient for its update, removal and
any other manipulation.

Self-descriptive Message Every message besides raw
data must contain some meta-data.

HATEOAS (Hypermedia as the Engine of Applica-
tion State) People tend to underestimate the im-
portance of this point. First of all, a state of
the resource can be changed by the client only
through the list of possible actions received from
the server. This means, that the model of the en-
tity is complete, and client is able to select one
from the provided possibilities and is not sup-
posed to ”create” some new actions. The next
requirement is that, a server but not a client spec-
ifies an URI namespace and the server should
provide to the client information how to build
an URI. Also it says, that a client communicates

with a server through a dynamically generated
hypermedia. This implies, that there is almost
no need for a client to ”manually” create URIs.
A server is supposed to provide different URIs
to the client as part of resource representation.

4. RESTful API Design
Let us describe the basic ideas used for a design of our
RESTful API. Web services designed according REST
principles are called RESTful APIs and usually they
are implemented on a top of the HTTP protocol [9].
The client sends a HTTP request (URI, headers, body)
and the server responds with HTTP response (headers,
body, HTTP return code). Four operations provided by
HTTP protocol are used to manipulate with resources
through their URIs:

GET provides read-only access to a resource
PUT modifies a resource
DELETE deletes a resource
POST creates a resource

To fulfill the HATEOAS principle every represen-
tation should contain some links to possible actions
under the resource and some links to near resources.

As for us a BP is a black box with some missing
information (hole) we need a deeper understanding
of it. So it is possible to treat a hole as place for a
sub-process, where only little information is known:

• What are the input data?
• What is the input event?
• What are the output data?
• What is the output event?

As it was already stated our solution would have
three entities:

Template of the process is an entity, which represents
a model of the process. Almost all internal de-
tails are hidden and some variable components
are represented as holes. The process that does
not have any holes can be also described with
this template; just list of holes would be empty.



Pattern of the process (a filled template) is intended
to represent a predefined set of process varia-
tions where variable components got concrete
values.

Instance of the process is actually generated from
some pattern. It represents an ongoing process.
An instance can have states described on the
(Figure 2)

As RESTful API is a tool for manipulating with
resources we need to describe them. We choose JSON
(Java Script Object Notation) as a tool for resource
representation because it is a structured, lightweight,
human- and machine-readable format.

To design some API is easy, but make its users
really love it is harder. To make this happen we need
to have easy-to-read documentation, API should be
consistent, scalable and easy-to-test. All these targets
we can achieve with RESTful API Modeling Language
(RAML). It is a language for API description. As
RAML is human friendly format it is easy to use. As
RAML is a machine-readable we can easily generate a
code prototype for a server’s side and some mockups
a client’s side and furthermore, it is easy to generate a
full documentation.

In this article there is no space to put entire de-
scription, so we will discuss some main points and the
whole raml description for RESTful API you can find
in the additional material.

As RESTful API is based on the resources and
every resource must have a unique identifier (URI) we
will start from the defining a general URI namespace
(relative to the base URI):

• /templates
• /templates/{templateId}
• /patterns
• /patterns/{patternId}
• /patterns/{patternId}/holes
• /patterns/{patternId}/holes/{holeName}
• /instances
• /instances/{instanceId}
• /instances/{instanceId}/holes
• /instances/{instanceId}/holes/{holeName}

The structure is clear. Other details (method verbs,
request and response body, returned HTTP codes and
etc) you can find on github.

Here we will describe some basic ideas that lay
behind that.

Idea 1. We do not want our users (clients) to
generate URIs every time they want to communicate
with the server. Being a server we want to provide
a list of possible actions, that clients as supposed to

use. Therefore every resource has a property ”links”
where the most common actions are described. Let ask
ourselves a question ”What actions a user is supposed
to take under some instance?”. As the user can do just
a few actions (abort, run or pause) we will provide a
direct instructions (URI + method) how to do that.

Idea 2. Usually assumptions are wrong. So in
case we are not aware of some ”specific” action, we
will provide a user a possibility to manually build an
URI by propagating ”id” property into every resource
representation.

Idea 3. To make our users happy we need to pro-
vide and easy way for a resource manipulation. This
means, that a representation they obtain through the
”GET” method they can reuse in ”PUT”/”POST” meth-
ods. Generally it is one of the basic ideas of the REST,
but during the design people underestimate this point,
that leads to a need of redesigning and reimplementing
the solution.

Idea 4. We cannot guarantee that description of
the holes in the template and in the pattern will stay the
same for ever. That is why every pattern and instance
have its own copy of each hole description.

Idea 5. We can say, that a ”hole” is not a part
of ”pattern” or ”instance”, but a separate resource.
Also we should admit, that boundary conditions for
the ”hole” are described in a template and we cannot
change them. The only thing that we can change is
an assigned pattern. That is why we do not have an
operation ”update” the hole for patterns and instances,
but instead of it we designed an action ”assign pattern”
in a list of possible actions under the resource.

Idea 6. Instance of the business process is quite
complex. And we need to provide a simple way for
sharing the information about its status. That is why,
every instance provide a list of activities that are cur-
rently in progress (because some activities can be par-
allel) with information if this activity is ”hole” or some
”internal” activity of the process, a status of the activ-
ity and a list of resources that are required but are not
currently available.

5. Conclusions
In this paper we discussed the current needs of busi-
ness in an area of a business process management.
Afterwards we introduced a possible solution to the
problems in the form of RESTful API.

The designed API allows to change business pro-
cesses on the fly. In the RESTful API we provided
one more abstraction layer which helps to keep away
BPE. Such approach opens an opportunity to change
underlaying BPE without extremely high expenses.



Figure 2. Possible state changes for instance

The main contribution of our approach is the ability
to implement dynamic business processes executions
and, in general, to improve scalability and reliability
of the business process engines maintaining the execu-
tions or their parts in distributed environments.

In this paper we present only a description of
RESTful API. The next step is to implement and test
it with different BPEs and improve the current design
if needed.

Acknowledgements
I would like to thank my supervisor Marek Rychly for
his help.

References
[1] Documents associated with business process

model and notation (bpmn) version 2.0. omg,
2011.

[2] Puting soap to rest. whitepaper, 2015.

[3] M. Muehlen, J. V. Nickerson, and Swenson K. D.
Developing web services choreography standards –
the case of rest vs. soap. Decision Support Systems,
40(1):9–29, July 2005.

[4] KUMARAN S., LIU R., DHOOLIA P., HEATH
T., NANDI P., and PINEL F. A restful architec-
ture for service-oriented business process execu-
tion. In 2008 IEEE 10th International Conference
on e-Business Engineering, pages 197–204, 2008.
ISBN 978-0-7695-3395-7.

[5] In-Chul Song Joo Hyuk Jeon Sanghyun Yoo, Yo-
han Roh. Rule-based dynamic business process
modification and adaptation. International Con-
ference on Information Networking, pages 1–5, 01
2008.

[6] Yannis Chamodrakas-Drakoulis Martakos
Nancy Alexopoulou, Mara Nikolaidou, editor. En-
abling On-the-fly Business Process Composition
through an Event-based Approach, 2008.

[7] D. GEORGAKOPOULOS, M. HORNICK, and
A SHELH. An overview of workflow manage-
ment: From process modeling to workflow au-
tomation infrastructure. Distributed and parallel
Databases, 3(2):119–153, 1995. ISSN 1573-7578.

[8] Roy Thomas FIEelding. Architectural Styles and
the Design of Network-based Software Architec-
ture. PhD thesis, UNIVERSITY OF CALIFOR-
NIA, IRVINE, 2000.

[9] ALLAMARAJU S. RESTful Web Services Cook-
book: Solutions for Improving Scalability and Sim-
plicity. O’Reilly Media, Inc, 2010. IBSN: 978-0-
596-80168-7.


	Introduction
	BPM and BPE
	REST Architectural Style
	RESTful API Design
	Conclusions
	References

