
http://excel.fit.vutbr.cz

Foreground Detection and Prototyping of
Photographic Composition on Android
Marek Salát

Abstract
The goal of this project is to create a new image prototyping application. The application enables
users to capture scene and enhance reality in an innovative way using an ordinary smartphone.
They can replace background of the captured scene and create collages or new original images.
The created image can be created and shared within seconds with minimal interaction. Proper
foreground/background detection (image matting) is a vital process. The solution I am suggesting
uses appropriate computer vision and image processing algorithms, namely Global Sampling
Matting. The application is built for the Android platform and uses NDK (Native Development Kit).
Parts of the core algorithm are accelerated in the GPU via an OpenGL ES 3.1 compute shader.
One part of my work focuses on optimizing algorithms and effective image processing on Android
devices. Another part of the work aims to create an intuitive user interface that requires minimal
interaction. At the moment, the application is published on Google Play – ViralCam.

Keywords: Image composition — Scene prototyping — Foreground detection — Background
extraction — Image matting — Global sampling matting — Learning based digital — Matting —
Trimap — Alpha mask — Android — Compute shader — GPGPU

Supplementary Material: Google Play – ViralCam — Youtube – Demo Video

*salat.marek42@gmail.com, Faculty of Information Technology, Brno University of Technology

1. Introduction

Users often have an idea on how to incorporate ele-
ments of one picture into another picture (see Fig. 1, 2
and 4). However, in many cases, they are not familiar
with image editors (Photoshop, Gimp etc.). Most of
the times, the programs are either too complicated or
available for a price that is prohibitive to this kind of
audience. They are not able to create what they want
and they must rely on others (Fig. 2 and 1). Even if
they try to solve the task using traditional tools it can
be an unpleasant task (for example magic lasso tool in
Photoshop). The task gets even more difficult when the
user has to use a combination of techniques to adjust

areas containing hair and semitransparent objects to
achieve a satisfactory result.

The inability to produce own composition or the
frustration of doing so are the main issues which led
to the project. With just a little help, these frustrated
users themselves will be able to produce more creative
work. That is the main reason for building ViralCam.
It allows the user to see in real-time what is being
captured and how this scene fits to the other picture.
Combining the images together requires minimum in-
teraction; the user just selects foreground and places it
over a camera preview.

Selecting the foreground or background (foreground

http://excel.fit.vutbr.cz
https://play.google.com/store/apps/details?id=com.salat.viralcam.app
https://youtu.be/eIO4-cKA1s4
mailto:salat.marek42@gmail.com


Figure 1. The example of the image composition.
The iconic iron throne from the Game of Thrones with
a person sitting on it.

Figure 2. Image shows that it does not pay off to ask
for image editing on the Internet. The scene is simple,
the user had a photo and wanted to put his own figure
over the first photo. Request from CollegeHumor [1].

or background detection) is a vital task for this project.
The task is more commonly called image or alpha
matting and is described in the Section 2.

The project uses known image matting algorithm
such as Global Sampling Method for Alpha Matting [2]
covered in Section 3. The algorithm has been imple-
mented in Android NDK (Native Development Kit).
The nature of the algorithm, and the fact that some
newer Android devices are equipped with OpenGL ES
3.1 Compute Shader, allowed that it has been massively
parallelized and run on GPU (described at Section 4.2).
The GPU parallelization sped up the whole process
from 4 – 7 seconds to less then a second which could
brought the project closer to a nice-to-have feature
real-time scene visualization.

2. Alpha Matting
Throughout this paper, it is assumed that a color im-
age I consists of a discrete array of pixels (in RGB
– red, green, blue). The Alpha matting or the digital
matting is associated with the problem of softly sepa-
rating an image into a foreground image F and into a
background image B from a single input image I along
with with its opacity mask α . It means that I is formed
by linear blending of F and B using α . These three im-
ages relate by matting Equation (1). Image matting is
used in interactive image editing, video segmentation
and also in film making.

I = Fα +B(1−α) (1)

The matting problem cannot be solved uniquely
since there are many possible foreground and back-
ground explanations for the observed colors [3]. Equa-
tion (1) shows that there are seven unknowns on one
hand but only three equations (three unknowns for fore-
ground color, three for background color and one for
alpha, the only known is image color) solving them.

Despite the fact that the problem is inherently
under-constrained, it could be solved by adding more
information about the image. The additional infor-
mation could take form of a scribble-set or trimaps
(see Figure 3). Such information labels pixels into
two groups: the first group defines pixels which are
definitely foreground, the second group labels pixel
which are definitely background. The remaining pixels
are marked as unknown. The alpha value α is then
calculated for unknown pixels only.

Even with a known alpha value and these con-
straints, the problem is still ill-posed (the alpha value
may be estimated incorrectly in favour of foreground
or background). Therefore, several solutions proposed
other additional constraints [4].



2.1 Trimap as a User Input
As mentioned before, the input can be in the form of
scribbles [5] or trimaps [6]. I have found scribbles to
be unintuitive and most of the times, it was difficult to
predict the result without knowing the principles of the
underlying algorithm. Very often, the resulting image
was completely different from the expectations.

Trimap segments the image into three regions: def-
inite foreground, definite background, and unknown.
Alpha values are calculated only for unknown pixels
using knowledge from other regions since their alpha
values are known.

The trimap quality plays a significant role in the
precision of the resulting alpha mask (or image). Very
good trimap can reduce the number of unknown vari-
ables that imply fewer variables to estimate. The thick-
ness of the unknown region creates a considerable
factor of a good trimap [7].

The project aims at effective trimap creation re-
quiring minimal interaction and it has to be intuitive
at the same time. Quality of the computed alpha mask
and time to compute trimap are also taken in account.

3. A Global Sampling Method for Alpha
Matting

The algorithm is inspired by Robust matting [8], Knock-
out [9], Shared matting[10]. All these methods collect
nearby (in a certain metric, e.g., Euclidean/geodesic
distance, or nearest on a ray) samples. He et al. [2]
proposes using of a global sample set that contains all
available samples, denoted as FB search space. The
spatial distance and the color fitness are then consid-
ered simultaneously for selecting the good samples
from this set [2].

The goal is to select a good pair of samples (fore-
ground, background) for any unknown pixel from all
candidate pairs. The algorithm comprises following
steps (the following steps are brief summary of the al-
gorithm, more information can be found in the seminal
work [2] or in Section 4.2):

Create global sample set – foreground (background)
sample set consists of all known foreground (back-
ground) pixels on the unknown region’s boundary.

Extend global sample set – Add random pixel to
global set.

Initialize samples – Each of the unknown pixel
has its own sample. The sample consist of foreground
pixel, background pixel, closest distance to foreground
and background boundary, cost value and alpha. Sam-
ple initialization assigns random boundary pixel from
the global set, cost value is set to infinity. The clos-
est distance is found by iterating over global set and

comparing distances.
Apply SampleMatch algorithm – All pixels from

global set are sorted by intensity (actual sorting criteria
does not matter [2]). The goal is to find a pair (fore-
ground, background) of points in the FB search space
for each unknown pixel which has the (approximately)
smallest cost. The method iterates over propagation
and random search stages. As He et al. [2] claims, ten
iterations are sufficient.

Propagation – For the unknown pixel being scanned,
its cost is updated by considering the current optimal
sample pairs of its neighbouring pixels.

Random search – The step tests a sequence of
random points in the neighbourhood (in the FB space)
of the current optimal point. The neighbourhood radius
decreases exponentially (in each iteration).

4. Android Application
The most important part of the project is to create the
application that will respect UX and design principles.
For this part I decided to implement an application for
Android.

4.1 Android NDK Utilization
Implementing a real-time image processing applica-
tion in interpreted language (Android main program-
ming language is Java) can be challenging. Fortu-
nately, Android offers capabilities of native code via
Android NDK. Programmer can choose from C or C++
equipped with standard libraries.

From my experience, the bottleneck on the An-
droid platform is usually the memory. It is not recom-
mended to use more than three images of the same size
as the device screen. Older platforms allow allocating
only 16 MB per application [11]. Furthermore, alloca-
tion of more continuous memory may be an issue; e.g.
in case of a bitmap with dimension of the size of the
screen. Other problems could be caused by reading
randomly from a bitmap due to skipping large chunks
of memory which are not cached.

My application assumes that users will create pho-
tos quickly, spontaneously and the results will be shared
on social media. The typical image size on Facebook,
Twitter, or 9gag is around one mega pixel. On the
grounds of performance reasons and the fact that the
image does not have to be in full resolution I have
decided to downscale the image, somewhere around
0.5 to 1 mega pixel, typically 800× 600. The cur-
rent implementation of the A Global Sampling Method
for Alpha Matting [2] for images 800x600 on Nexus
5X takes 4–7 seconds depending on the size of the
unknown region.



Figure 3. Example of the matting problem. From the left first: input image. Second: user-defined trimap (blue
for background, red for foreground and green as an unknown region). Third: computed alpha mask. Fourth:
original image without background (foreground area and unknown region are merged). Last: background is
replaced. Figure is borrowed from book Image and Video Matting: A survey [7].

4.2 GPGPU via OpenGL ES 3.1 Compute Shader
Android 5.0 introduced OpenGL ES 3.1 with compute
shaders. At the moment, compute shaders are sup-
ported at least on 7.1 % devices [12]. It needs to be
mentioned that a device running Android 5.0 or higher
may or may not support the feature.

Unfortunately compute shaders are still bound to
rendering pipeline and cannot be used without ren-
dering on the screen (GLSurfaceView and GLSurface-
View.Renderer must be used1).

4.3 Implementation of the Compute Shader
The matting algorithm comprises of the following
steps:

1. Find the boundary for foreground and un-
known region and boundary for background
and unknown region. Boundary is found by
checking each neighbouring pixel. If the pixel
represents the foreground and at least one neigh-
bour is labelled as unknown, the pixel is as-
signed to the foreground set, similarly for the
background pixel. The step is independent on
other pixels. However writing to the global set
must be synchronized in the way that no value
is rewritten or maximal size is preserved. In the
compute shader implementation atomic counters
are used to prevent both issues.

2. Extend the boundary by adding random pix-
els to the global set. The step assigns random
pixel from foreground region to the foreground
boundary and analogous to the background pixel.
The pixel is not assigned to the global set if
global set contains more than twice the amount
of the original boundary size. The step is also

1You can download the fragment I use at GitHub repository.
You can also find there few examples showing how to compile
the shader, bind buffers, textures, pass data through shader and
also how to run them. Please visit https://github.com/
MarekSalat for more information.

independent on other pixels and can be run in
parallel.

3. Initialize samples for each unknown pixel. First,
the initialization, finds the distance to the near-
est foreground and background pixel from the
global set (measured by euclidean distance). Sec-
ondly, it assigns random foreground and back-
ground pixel from global set. The cost value
is set to infinity, the alpha value is set to zero.
The initialization is also independent on other
samples.

4. Iterate over propagation and random search.
The propagation searches in neighbourhood for
better sample selection. Random search follows
immediately afterwards. It selects random pixel
from the global set by decreasing radius expo-
nentially. Both propagation and random search
update the cost value and the alpha value. As
mentioned above in Section 3, the step is run for
each sample (unknown pixel) and each sample
processing is independent from others.

5. Update alpha mask. At this point the algo-
rithm calculated all alpha values for unknown
pixels. The step fills whole alpha mask by cor-
responding alpha values (255 for definite back-
ground, 0 for definite foreground and sample
alpha value for its unknown pixel).

Each step must be completed before the next step
can be run; the same applies to the iteration over prop-
agation and random search. Thus, each step represents
one shader (kernel) which is dispatched only if previ-
ous step has finished. The CPU implementation loops
over all pixels in the image for in each step; each thread
computes one pixel. The dimension of the workgroup
is 32×32 and the whole problem has the dimension
of the image (rounded and divided by size of the work-
group).

Computing alpha mask has been sped up from
4-7 second to 300-500 milliseconds. This has been
measured on Nexus 5X.

https://github.com/MarekSalat
https://github.com/MarekSalat


Figure 4. The first image shows the visualization of scene capturing. The second image shows trimap
initialization. The third image is the result. Last picture contains trimap editing. .

4.4 User interface
Figure 4 shows application capabilities. When the
application is started, background is selected first. The
Application offers several predefined images. The user
can also choose pictures from an image library.

Scene capturing and visualization – At the mo-
ment, for the sake of MVP (minimal viable product)
simplicity, I have chosen to simply overlap the cam-
era output by semi-transparent background. It turns
out that this solution is sufficient enough for visualiz-
ing the scene. The user can swipe over the image to
increase or decrease background transparency.

Trimap initialization – User roughly marks the
object edge. This does not have to be precise to the
pixel. The inner area is automatically marked as a
definite foreground. Outer area is marked as definite a
background. If the image contains larger transparent
areas, such as hair or spikes, the trimap can be edited
and these areas can be marked as an unknown region.

Show result – After trimap initialization, the ap-
plication displays the result. In this step, the user can
pinch to zoom to validate all the problematic parts of
the image.

Edit trimap – User can always edit the trimap by
simply drawing a definite foreground, background or
unknown region (application user brush named Clear).
In most of the applications, this step requires switching
between different brushes by the user. To improve the
user experience, I introduced a smarter brush which
selects the brush based on the starting point of the
user’s swipe motion. In other words, if the user starts
drawing from the background, the background brush
is selected, other brushes are initiated by drawing from
their respective areas. The user may share the result
on social media or save it for a later use.

5. Conclusions

At the moment, the published alpha application is
using only the NDK implementation. The compute
shader variant is not ready for production. The perfor-
mance and quality has been tested on LG Nexus 5X
with a standard dataset [13]. Provided dataset contains
various images with trimaps with respective true al-
pha mattes. The dateset is composed of images from
non-transparent to semi-transparent or even fully trans-
parent images, also images with short or long hair.

Measured average time per unknown pixel is 0.11
milliseconds which is 7.2 seconds per image (roughly
half megapixel). The 7-seconds processing time it is
not close to the real-time preview goal. However, the
compute shaders seem to be promising. For real-time
preview the quality may be lower and the whole pro-
cess may be sped up by downscaling the imageto. On
the other hand, a significant drawback for the compute
shader is lower support on Android devices (less than
7%).

The average MSE (Mean Square Error) of the
computed alpha mask without pre-processing or post-
processing against ground-true alpha as difference of
both images is 353. For comparison, the Robust mat-
ting [8] MSE is 350 on the same data set and the
method is ranked on alphamatting.com as 36th. The
quality could be better and it will be addressed in future
releases, still it is sufficient enough for MVP (minimal
viable product). The general image quality and com-
position perception will be a part of the future user
testing evaluation.

There are several ways to increase the matte quality.
First way is trimap pre-processing where colors closer
to the unknown region boundary with similar color
properties (color and spatial distance) are considered
to be known depending on other regions. Such a pre-



processing reduces the number of unknown variables
and increases overall matte quality. The other method
is the post-processing as He et al. [2] proposed. They
used Fast Guided Filter [14] which ran 0.3 second per
mega pixel, but it could be estimated to run slower on
mobile device.

The application is published on Google Play – Vi-
ralCam for download (see supplementary materials
Section). The most common issue so far was a lack of
a help which was added in version 1.3. Other important
issue coming from users were problems with camera
focus and, on some devices, also image rotation after
capturing a scene. All these issues have been addressed
in last the update. However, the camera rotation issues
still persists on Sony Xperi E4g. For the production
version, Google Analytics will be integrated to gather
more precise data about user acquisition and behaviour
within the application.

References
[1] CollegeHumor. 12 people who had pho-

toshop requests. . . and got just perfect re-
sults. http://www.collegehumor.com/
post/6997451/, 2014.

[2] K. He, C. Rhemann, C. Rother, X. Tang, and
J. Sun. A global sampling method for alpha mat-
ting. In Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pages
2049–2056, June 2011.

[3] Richard J. Radke. Computer Vision for Visual
Effects. Cambridge University Press, New York,
NY, USA, 2012.

[4] Y. Zheng and C. Kambhamettu. Learning based
digital matting. In Computer Vision, 2009 IEEE
12th International Conference on, pages 889–
896, Sept 2009.

[5] A. Levin, D. Lischinski, and Y. Weiss. A closed
form solution to natural image matting. In Com-
puter Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 1,
pages 61–68, June 2006.

[6] C. L. Hsieh and M. S. Lee. Automatic trimap
generation for digital image matting. In Signal
and Information Processing Association Annual
Summit and Conference (APSIPA), 2013 Asia-
Pacific, pages 1–5, Oct 2013.

[7] Jue Wang and Michael F. Cohen. Image and
video matting: A survey. Found. Trends. Comput.
Graph. Vis., 3(2):97–175, January 2007.

[8] J. Wang and M. F. Cohen. Optimized color sam-
pling for robust matting. In Computer Vision
and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1–8, June 2007.

[9] A. Berman, A. Dadourian, and P. Vlahos. Method
for removing from an image the background sur-
rounding a selected object, October 17 2000. US
Patent 6,134,346.

[10] Eduardo S. L. Gastal and Manuel M. Oliveira.
Shared sampling for real-time alpha matting.
Computer Graphics Forum, 29(2):575–584, May
2010. Proceedings of Eurographics.

[11] Android compatibility downloads.
http://source.android.com/
compatibility/downloads.html,
2016.

[12] Dashboards. http://developer.
android.com/about/dashboards/
index.html, 2016.

[13] C. Rhemann, C. Rother, J. Wang, M. Gelautz,
P. Kohli, and P. Rott. A perceptually moti-
vated online benchmark for image matting. In
Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1826–
1833, June 2009.

[14] K. He, J. Sun, and X. Tang. Guided image
filtering. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 35(6):1397–1409,
June 2013.

http://www.collegehumor.com/post/6997451/
http://www.collegehumor.com/post/6997451/
http://source.android.com/compatibility/downloads.html
http://source.android.com/compatibility/downloads.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

	Introduction
	Alpha Matting
	A Global Sampling Method for Alpha Matting
	Android Application
	Conclusions
	References

