
http://excel.fit.vutbr.cz

Evolutionary design of domain specific
non-cryptographic hash functions
Marek Kidoň*

Abstract
Hash functions are inseparable part of modern computer world. Fast associative arrays so popular
among computer programmers for their robustness and simplicity, are based on them. Their
performance greatly depends on their design and although their roots are deep in the past, the
topic of designing a well performing hash function is still often discussed today. There is currently
a plenty of exceptional implementations of generic hash functions and their numbers are rising.
Such functions are not constrained to a concrete set of inputs, they perform on any input. On the
other hand, there are use cases when input domain is known in advance. In such case, there
is a room for an improvement by designing a specific hash function thus reaching better level of
performance in comparison with a generic hash function. However designing a hash function is not
a trivial task. There are no rules, standards or guides. In case of manual design the hash function
author has to rely on his/her knowledge, experience, inventiveness and intuition. This fact opens up
a space for different techniques such as evolutionary algorithms, an unconventional approach to
solve certain problem inspired by the process of species reproduction. In this paper hash functions
are designed for the domain of IP addresses using genetic programming. Genetic programming
algorithm parameters are accurately chosen so the evolved functions will perform on its best. The
experiments proved that the developed hash functions are better in comparison with generic hash
functions in terms of both the speed and the performance.

Keywords: Hash Function — Genetic Programming — Evolution Design

Supplementary Material: N/A

*xkidon00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Hashing is used in fast associative array implementa-
tions among other applications. Its concept seems to
be ageless since there has been a lot of recent progress.
For example the popular hash function MurmurHash2
[1] found its application at Apache Software Founda-
tion and has already been replaced with MurmurHash3
[2]. In 2010 Google developed the CityHash [3] func-
tion family which mainly focuses on hashing strings.
It has been strongly influenced by MurmurHash2 but
its main concern is speed and portability. Yet in 2014
Google released a new family called the FarmHash
[4] focusing on hashing strings as well as other data
structures.

All previously stated hashes are generic and thus

have been designed to work for any input. But some-
times the input domain is known in advance. In such
case we can design custom hash function for the in-
put domain and reaching better performance levels.
Considering associative arrays the hash function is
the critical point especially in performance demanding
applications. In our work, we use 4 subsets of the
Internet Protocol (IP) address range, containing 8192
addresses each. Our task is to automatically design
well performing hash function for each of these sub-
sets. The goal of this work is to design a single hash
by an evolutionary algorithm for each subset that out-
performs conventional generic hash functions in terms
of collision resistance and speed.

A good solution is such a solution which outper-

http://excel.fit.vutbr.cz
mailto:xkidon00@stud.fit.vutbr.cz


forms a hash function designed by a human experts
in hashing in both speed and collision resistance crite-
ria. Of course there is the concept of perfect hashing
[5], but our work aims at use cases such as field pro-
grammable gate array, where perfect hashing cannot
be used.

Evolution design has changed the way people think
about problems and their solutions [6]. A wide vari-
ety of problems can be viewed as a state space search
problems where evolutionary algorithms do excel. De-
signing a hash function is no exception [7, 8]. Each
hash represents a single point (feasible solution) in
a huge state space. We will design hash functions
using the genetic programming algorithm. Both ge-
netic programming individuals and hash functions can
be represented by an expression. This is the core fact
that we will exploit in our pursuit of designing well
performing hash functions.

Evolution design of domain specific hash function
is a rare topic. It is suitable for cases where perfect
hashing cannot be used and conventional generic hash
functions are too slow and suffer from high collision
rate. In such case evolutionary designed domain spe-
cific hashes could outperform generic ones by a sig-
nificant margin in terms of collision resistance and by
great margin in terms of speed.

2. Existing Method Approaches

Evolution design of non-cryptographic hash function
has been an interesting topic in the last decade. Ma-
jority of previous work focuses on development of
generic hashes [7, 8]. Both evolutionary optimization
and evolutionary design have been considered. A simi-
lar work to ours is [7]. It is similar in terms of goals
and used technique but uses evolutionary optimization
instead. The state space has been dramatically con-
strained in the beginning since the author optimizes
parameters a,b of the following hash function ha,b(k):

ha,b(k) = ((ak+b) mod p) mod N (1)

where p is a prime number and N − 1 is the maxi-
mum output slot. “The results are promising but the
methodology is questionable” [8]. Since the input set
is chosen randomly, why not use elements of the input
directly? Also the collision resistance criteria is not
well suited for evolving generic hash functions since it
is very input dependent.

Probably the closest work to our problem is the [8]
where the authors also selected genetic programming
as an evolutionary platform and even the parameter
choice is similar. Choosing avalanche effect properties

as basis for measuring the fitness of evolved individu-
als seems like a good choice. The avalanche effect is
a desirable hash function property reflecting the rate of
change of output on change of the input. Even a small
change of input should produce great change on out-
put. Avalanche effect is input independent which is
a very positive feature in this case. They tested their
system on various key-sets and reached promising re-
sults. They state that their system is very robust since
a change of evolution parameters has low or no impact
on the quality of solution but such behavior can result
in a degradation of the algorithm to the random search.
Also they state they are automatically designing hash
functions. This does not seem to be entirely true be-
cause they are merely optimizing mixing components
of the Merkle–Damgård scheme [9], a generally used
construction for (primarily) cryptographic hash func-
tion.

3. Design and Implementation
In this section we will explain high level design of
evolved hashes and decisions we made in choosing
genetic programming algorithm parameters. Genetic
programming belongs among evolutionary algorithms
where candidate solutions are represented by compu-
tational trees. These trees will directly represent our
hash functions. A group of candidate solutions form
a generation. The algorithm progresses throughout its
run by repetitively breeding new generations using ge-
netic operators. The run ends if a good enough solution
was found or a maximum generation was reached.

As stated in [10], we need to make several prepara-
tory steps and wisely choose the following:

1. terminal set, the set of functions of zero arity,
2. non-terminal set, the set of function of arity

greater than zero,
3. the fitness measure,
4. the termination criterion,
5. the set of auxiliary parameters controlling the

run.

Unusually the simplest of these is to define the
fitness function. Since we are developing domain spe-
cific functions, we will stick with a data dependent
fitness measure. We will use the collision resistance
and we will be minimizing amount of collisions on
given data set. The fitness function is defined as fol-
lows:

fset,h = collisions/size (2)

a ratio of size of the input set and a number of colli-
sions hash function produced on the given input set.
An important criteria of hash function is their speed.



Figure 1. Basic reproduction pipeline.

As we will see later, all of our hash functions are in-
herently fast and very similar to each other in terms of
speed. Therefore we are not measuring this.

Common operations found in hash functions such
as MururHash or lookup3 are the multiplication (∗),
addition (+), left or right rotations (≪,≫), left or
right shifts (�,�) , XOR (∧) and ones’ complement
(¬). Although these are the most common sometimes
we can encounter more exotic functions such as minus,
modulus, bitwise OR and bitwise AND. We choose
our non-terminal set to be as follows:

NT S = {∗,+,∧,≫} (3)

The third step but not less important is to select
the terminal set. We work with IP version four ad-
dresses. Each address consists of four octets, eight
bit each. We add each octet to our terminal set and
denote them o0,o1,o2,o3. State of the art hash func-
tions usually use some kind of a magic constant to
introduce an additional randomness. In our case we
use the ephemeral random constant. Such constants
are randomly generated upon creation and fulfill ba-
sic genetic programming requirements such as, they
can be mutated or regenerated. In our case, we will
use unary function (denoted ℜ) which selects arbitrary
prime number from list of all prime numbers in the
〈2,2N〉 interval where N is the size of the input dataset.
Our resulting terminal set is:

T S = {o0..o3,ℜ} (4)

The algorithm is allowed to terminate if the limit
of 100 000 candidate solution evaluations has been
reached or a perfect solution has been found. Perfect
solution is solution with fitness equal to zero or in
other words our candidate solution did not produce any
collisions at all. This is however unlikely to happen.

Finally in the Figure 1 we can see our reproduc-
tion pipeline which together with Table 1 forms all
remaining control parameters.

Table 1. Summary of genetic programming algorithm
setup.

Parameter Value
Evaluations 100000
Population size 512
Maximum depth 6
Non-terminal set {∗,+,∧,≫}
Terminal set {o0..o3,ℜ}
Initialization method Ramped half-and-half
Initial maximum depth 6
Initial minimum depth 2
Selection Tournament
Tournament size 7
Crossover Subtree
Root selection rate 0.0
Leaf selection rate 0.1
Node selection rate 0.9
Mutation Subtree
Rate 0.1
Elitism Yes
Rate 0.05

4. Experiments and Results

Each experiment in this section is based on an aver-
age of 50 independent runs. We will compare our
results with Murmurhash3, CityHash and FarmHash.
These functions (families) are state of the art hash
functions used in the modern computer world or their
latest versions/modifications. Great example is the
MurmurHash3 which is currently used in various open-
source projects such as the libstdc++, nginx or Apache
Hadoop.

We have chosen MurmurHash3 as a reference hash
to compare it with the results of the first experiment.
In the Figure 2 we can see that evolved functions
are better performing than the human-created Mur-
murHash3. An interesting experimental result is that
even in generation zero, there exists at least one solu-
tion that performs better than all of these conventional
hashes. Genetic programming run rapidly converges
in early generations and stagnates in later generations
[10]. We can see that this is our case exactly. In theory
collision resistance performance could be enhanced
by incorporating a collision resolution such as Cuckoo
hashing mechanism [11] where two or more hash func-
tions are used. Achieved results are better than one of
the latest results [12] based on the evolutionary algo-
rithm and Cuckoo hashing approach. Below we can
se a sample hash function evolved using the proposed
IPHash system.



0 50 100 150 200
5,180

5,200

5,220

5,240

5,260

5,280

5,300

5,320

Generation

Su
cc

es
sf

ul
ly

ha
sh

ed

Elitist Random Search
Random Search
MurmurHash3

Proposed IPHash

0 50 100 150 200
Generation

Proposed IPHash
Diversity of runs

Figure 2. Evolved hash functions in comparison with conventional hash functions in terms of collision
resistance.

fo0,o1,o2,o3 = (((ℜ∧ (o1∧o3))+(o2 ∗ℜ))+

((ℜ ≫ o1)≫ (((o1 ∗o0)≫ o1)∗ (ℜ ≫ o1))))
(5)

In the same figure two versions of random search
algorithm are put in comparison. The elitist random
search performs even better than our genetic program-
ming algorithm, however we should keep in mind, that
the random search algorithm has been greatly influ-
enced by the computational tree, terminal and non-
terminal sets we have chosen. This outcome provides
us with interesting conclusion that the state space as
described by selected encoding and collision ratio fit-
ness is more suitable for random search rather than
genetic programming.

In the second experiment we have investigated
the impact of various population sizes and individual
depths in zero generation. Also we have studied how
various terminal and non-terminal sets affect resulting
fitness values.

In the first part, we have selected our population
sizes from the set of powers of two. Smallest popula-
tion size was set to eight individuals, biggest to 1024
individuals. Initial depth will be selected from interval
〈2,6〉 with step of size 1. All other parameters remain
unchanged. As we can see in the Figure 3 with excep-
tion of very shallow individuals and small generations,
results are stable. The best individual that managed
to hash 5314 addresses settled at population size 64
and depth 3. However bigger populations or deeper
trees offer similar collision numbers and the deviations
seem insignificant. On the other hand we should keep

in mind that in terms of high performance applica-
tions the difference of ten collision might become very
significant.

8 16 32 64 128256512 2
3

4
5

65,240
5,260
5,280
5,300
5,320

Population size
Initial depth

Su
cc

es
sf

ul
ly

ha
sh

ed

Figure 3. Number of successfully hashed addresses in
relation to population size and initial depth.

In the second part we have chosen several alterna-
tives to the basic setup (see Table 3) to be executed and
their output studied. As expected the loss of additional
randomness in form of ephemeral random constants
negatively influenced the output. However adding the
ones’ complement operator did not improve results in
spite of the fact that the ones’ complement and XOR
forms a complete logic set thus being able to compute
any possible logic function. The addition is popular
among hashing experts but as expected [8] its removal
didn’t have any significant influence on the results.
The rotation (shift) operators is always part of the core
of any good hash algorithm. The more interesting is
the result of rotation removal experiment where result-
ing individual quality didn’t suffer as significantly as



Table 2. Effect of various terminal and non-terminal sets on resulting fitness.

Set 1 Set 2 Set 3 Set 4

Algorithm Best Size Best Size Best Size Best Size
MurMurHash3 5190 213 5190 213 5206 213 5206 213
CityHash 5180 926 5156 926 5171 926 5155 926
FarmHash 5227 788 5199 788 5203 788 5158 788
IPHash 5352 73 5352 58 5342 86 5298 79

expected. Finally the removal of both rotation and
multiplication did have significant negative influence
on average best fitness.
Table 3. Effect of various terminal and non-terminal
sets on resulting fitness.

Terminal set Function set Average best
{o0..o3,ℜ} {∗,+,∧,≫} 5307
{o0..o3} {∗,+,∧,≫} 5291
{o0..o3,ℜ} {∗,+,∧,¬,≫} 5300
{o0..o3,ℜ} {∗,∧,≫} 5306
{o0..o3,ℜ} {+,∧,≫} 5290
{o0..o3,ℜ} {∗,+,∧} 5298
{o0..o3,ℜ} {+,∧} 5065

In the final experiment we have compared evolved
hashes with generic ones in terms of their computa-
tional size as well as summarized our results and en-
riched them with results on the remaining IP data sets.

Table 2 summarizes results reached so far in terms
of hash function performance on all four IP data sets.
We can also see the size of all used functions. The
size expresses the number of elementary instructions
in a hash function. All hashes were compiled with
gcc compiler version 4.8.3 on x86 64 Linux system.
Optimization flag level three was enabled. Results
were obtained with the readelf utility. The results may
(and will differ) on different architecture with different
compilers and setup. We can see that the proposed
IPHash produces extremely compact functions for all
IP data sets. We need to keep in mind that generic hash
functions almost always contain a cycle so the number
of executed instruction would get even higher.

5. Conclusions
This work focused on evolutionary design of hash func-
tions for the domain of IP addresses. Fast associative
arrays are widely based on hash functions. Their per-
formance greatly depends on their design and although
their roots are deep in the past, the topic of designing
a well performing hash function is still often discussed
today. The hash functions developed in or work outper-
formed MurmurHash3, FarmHash and CityHash. All

of them are considered exceptional implementations
of generic hash functions.

In terms of collision resistance we managed to
outperform conventional hash functions by hashing at
least a hundred keys more. In terms of speed evolved
domain specific hashes are 3 to more than 10 times
smaller then generic hash function.

We have shown that we can apply evolutionary
design on unconventional problems and reach good
results. We have researched evolutionary design ap-
plications towards a new direction and outperformed
existing solutions in these fields.

Results of this work could lead to an additional
research in both genetic programming and hash func-
tions. In the future work incorporating some sort of
collision resolution mechanism such as open address-
ing or Cuckoo hashing might significantly improve the
performance. Also the searched state space is wast.
Using one of generally used hashing schemes might
reduce the space towards better solutions.

Acknowledgements

I would like to thank my supervisor Roland Dobai for
his help.

References
[1] Austin Appleby. Murmurhash2 webpage, 2011.

https://sites.google.com/site/
murmurhash/, [Online, accessed: 4. 5. 2016].

[2] Austin Appleby. Smhasher and murmurhash3
webpage, 2016. https://github.com/
aappleby/smhasher/wiki/, [Online, ac-
cessed: 3. 5. 2016].

[3] Geoff Pike. Cityhash: Fast hash functions for
strings. Standford university class slides, October
2012.

[4] Geoff Pike. Google open source blog,
2014. http://google-opensource.
blogspot.cz/2014/03/
introducing-farmhash.html, [On-
line, accessed: 4. 10. 2016].

https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/
https://github.com/aappleby/smhasher/wiki/
https://github.com/aappleby/smhasher/wiki/
http://google-opensource.blogspot.cz/2014/03/introducing-farmhash.html
http://google-opensource.blogspot.cz/2014/03/introducing-farmhash.html
http://google-opensource.blogspot.cz/2014/03/introducing-farmhash.html


[5] Bohdan S. Majewski Zbigniew J. Czech,
George Havas. Fundamental study: Perfect hash-
ing. pages 1–143, 1997.

[6] Lukáš Sekanina. Evolučnı́ hardware. Academia,
2009.

[7] Mustafa Safdari. Evolving universal hash func-
tions using genetic algorithms. In Proceedings of
the 11th Genetic and Evolutionary Computation
Conference, pages 2729–2732, New York, 2009.

[8] César Estébanez, Yago Saez, Gustavo Recio, and
Pedro Isasi. Automatic design of noncrypto-
graphic hash functions using genetic program-
ming. Computational Intelligence, 30(4):798–
831, 2014.

[9] Ivan Damgård. A design principle for hash func-
tions. In CRYPTO ’89: Proceedings of the
9th Annual Inter- national Cryptology Confer-
ence on Advances in Cryptology, pages 416–427.
Springer, 1989.

[10] Riccardo Poli, William B. Langdon, and Nico-
las F. McPhee. Genetic Programming An Intro-
ductory Tutorial and a Survey of Techniques and
Applications. Lulu Enterprises, 2008.

[11] Rasmus Pagh and Flemming Friche Rodler.
Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[12] Roland Dobai and Jan Kořenek. Evolution of
non-cryptographic hash function pairs for fpga-
based network applications. In 2015 IEEE Sym-
posium Series on Computational Intelligence,
pages 1214–1219. Institute of Electrical and Elec-
tronics Engineers, 2015.


	Introduction
	Existing Method Approaches
	Design and Implementation
	Experiments and Results
	Conclusions
	References

