
http://excel.fit.vutbr.cz

Evolutionary design of domain specific
non-cryptographic hash functions
Marek Kidoň*

Abstract
Hash functions are inseparable part of modern computer world. Fast associative arrays so popular
among computer programmers for their robustness and simplicity, are based on them. Their
performance greatly depends on their design and although their roots are deep in the past, the
topic of designing a well performing hash function is still often discussed today. There is currently a
plenty of exceptional implementations of generic hash functions and their numbers are rising. Such
functions are not constrained to a concrete set of inputs, they perform on any input. On the other
hand, there are use cases when input domain is known in advance. In such case, there is a room
for an improvement by designing specific hash function thus reaching better level of performance
in comparison with a generic hash function. However designing a hash function is not a trivial
task. There are no rules, standards or guides. In case of manual design the hash function author
has to rely on his/her knowledge, experience, inventiveness and intuition. This fact opens up a
space for different techniques such as evolutionary algorithms, an unconventional approach to
solve certain problem inspired by the process of species reproduction. In this paper hash functions
are designed for the domain of IP addresses using genetic programming. Genetic programming
algorithm parameters are accurately chosen so the evolved functions will perform on its best. The
experiments proved that the developed hash functions are better in comparison with generic hash
functions terms of both speed and performance.

Keywords: Hash Function — Genetic Programming — Evolution Design

Supplementary Material: N/A

*xkidon00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction1

Hashing is used in fast associative array implementa-2

tions among other applications. Its concept seems to3

be ageless since there has been a lot of recent progress.4

For example popular hash function MurmurHash2 [1]5

found its application at Apache Software Foundation6

and has already been replaced with MurmurHash3 [2].7

In 2010 Google developed the CityHash [3] function8

family which mainly focuses on hashing strings. It9

has been strongly influenced by MurmurHash2 but its10

main concern is speed and portability. Yet in 201411

Google released a new family called the FarmHash12

[4] focusing on hashing strings as well as other data13

structures.14

All previously stated hashes are generic and thus15

have been designed to work for any input. But some- 16

times the input domain is known in advance. In such 17

case we can design custom hash function for the in- 18

put domain and reaching better performance levels. 19

Considering associative arrays the hash function is 20

the critical point especially in performance demanding 21

applications. In our work, we use 4 subsets of the 22

Internet Protocol (IP) address range, containing 8192 23

addresses each. Our task is to automatically design 24

well performing hash function for each of these sub- 25

sets. The goal of this work is to design a single hash 26

by an evolutionary algorithm for each subset that out- 27

performs conventional generic hash functions in terms 28

of collision resistance and speed. 29

A good solution is such solution which outper- 30

o1

o2 R

o1

o2 R

o4

o3 R

o1

o2 R

o4

o3 R

o1

o2 R

=

=

o4

o3 R

#19 Marek Kidoň
 xkidon00@stud.�t.vutbr.cz

0 50 100 150 200
5,180

5,200

5,220

5,240

5,260

5,280

5,300

5,320

Generation

S
uc

ce
ss

fu
ll

y
ha

sh
ed

Elitist Random Search
Random Search
MurmurHash3

Proposed IPHash

0 50 100 150 200
Generation

Proposed IPHash
Diversity of runs

Figure 2. Evolved hash functions in comparison with conventional hash functions in terms of collision
resistance.

fo0,o1,o2,o3 = (((ℜ∧ (o1 ∧o3))+(o2 ∗ℜ))+

((ℜ ≫ o1)≫ (((o1 ∗o0)≫ o1)∗ (ℜ ≫ o1))))
(5)

In the same figure two versions of random search181

algorithm are put in comparison. The elitist random182

search performs even better than our genetic program-183

ming algorithm, however we should keep in mind, that184

the random search algorithm has been greatly influ-185

enced by the computational tree, terminal and non-186

terminal sets we have chosen. This outcome provides187

us with interesting conclusion that the state space as188

described by selected encoding and collision ratio fit-189

ness is more suitable for random search rather than190

genetic programming.191

In the second experiment have investigated the im-192

pact of various population sizes and individual depths193

in zero generation. Also we have studied how various194

terminal and non-terminal sets affect resulting fitness195

values.196

In the first part, we have selected our population197

sizes from the set of powers of two. Smallest pop-198

ulation size was set to eight individuals, biggest to199

1024 individuals. Initial depth will be selected from200

interval 〈2,6〉 with step of size 1. All other parame-201

ters remain unchanged. As we can see in the Figure 3202

with exception of very shallow individuals and small203

generations, results are stable. The best individual that204

managed to hash 5314 addresses settled at population205

size 64 and depth 3. However bigger populations or206

deeper trees offer similar collision numbers and the207

deviations seem insignificant. On the other hand we208

should keep in mind that in terms of high performance 209

applications difference of ten collision might become 210

very significant. 211

8 16 32 64 128256512 2
3

4
5

65,240
5,260
5,280
5,300
5,320

Population size
Initial depth

S
uc

ce
ss

fu
ll

y
ha

sh
ed

Figure 3. Number of successfully hashed addresses in
relation to population size and initial depth.

In the second part we have chosen several alterna- 212

tives to the basic setup (see Table 2) to be executed 213

and their output studied. As expected the loss of ad- 214

ditional randomness in form of ephemeral random 215

constants negatively influenced the output. However 216

adding ones’ complement did not improve results in 217

spite of the fact that the ones complement and XOR 218

forms a complete logic set thus being able to compute 219

any possible logic function. The addition is popular 220

among hashing experts but as expected [8] its removal 221

didn’t have any significant influence on the results. 222

The rotation (shift) operators is always part of the core 223

of any good hash algorithm. The more interesting is 224

the result of rotation removal experiment where result- 225

ing individual quality didn’t suffer as significantly as 226

Each individual is asessed
in terms of collision resis-
tance. The number of suc-
cessfully hashed IP ad-
dresses from the given
data-set is measured. The
more IP addresses indi-
vidual hashes, the better
its �tness is. expected. Finally the removal of both rotation and227

multiplication did have significant negative influence228

on average best fitness.229

Table 2. Effect of various terminal and non-terminal
sets on resulting fitness.

Terminal set Function set Average best
{o0..o3,ℜ} {∗,+,∧,≫} 5307
{o0..o3} {∗,+,∧,≫} 5291

{o0..o3,ℜ} {∗,+,∧,¬,≫} 5300
{o0..o3,ℜ} {∗,∧,≫} 5306
{o0..o3,ℜ} {+,∧,≫} 5290
{o0..o3,ℜ} {∗,+,∧} 5298
{o0..o3,ℜ} {+,∧} 5065

In the final experiment we have compared evolved230

hashes with generic ones in terms of their computa-231

tional size as well as summarized our results and en-232

riched them with results on the remaining IP data sets.233

Table 3 summarizes results reached so far in terms234

of hash function performance on all four IP data sets.235

We can also see the size of all used functions. The size236

expresses a number of elementary instructions in hash237

function. All hashes were compiled with gcc compiler238

version 4.8.3 on x86 64 Linux system. Optimization239

flag level three was enabled. Results were obtained240

with readelf utility. The results may (and will differ)241

on different architecture with different compilers and242

setup. We can see that the proposed IPHash produces243

extremely compact functions for all IP data sets. We244

need to keep in mind that generic hash functions al-245

most always contain a cycle so the number of executed246

instruction would get even higher.247

5. Conclusions248

This work focused on evolutionary design of hash func-249

tions for the domain of IP addresses. Hash functions250

are widely used basis for fast associative arrays. Their251

performance greatly depends on their design and al-252

though their roots are deep in the past, the topic of253

designing a well performing hash function is still of-254

ten discussed today. The hash functions developed255

in or work outperformed MurmurHash3, FarmHash256

and CityHash. All of them are considered exceptional257

implementations of generic hash functions.258

In terms of collision resistance we managed to259

outperform conventional hash functions by hashing at260

least a hundred keys more. In terms of speed evolved261

domain specific hashes are 3 to more than 10 times262

smaller then generic hash function.263

We have shown that we can apply evolutionary264

design on unconventional problems and reach good265

results. We have researched evolutionary design ap- 266

plications towards a new direction and outperformed 267

existing solutions in these fields. 268

Results of this work could lead to additional re- 269

search in both genetic programming and hash func- 270

tions. In the future work incorporating some sort of 271

collision resolution mechanism such as open address- 272

ing or Cuckoo hashing might significantly improve the 273

performance. Also the searched state space is wast. 274

Using one of generally used hashing schemes might 275

reduce the space towards better solutions. 276

Acknowledgements 277

I would like to thank my supervisor Roland Dobai for 278

his help. 279

References 280

[1] Austin Appleby. Murmurhash2 webpage, 2011. 281

https://sites.google.com/site/ 282

murmurhash/, [Online, accessed: 4. 5. 2016]. 283

[2] Austin Appleby. Smhasher and murmurhash3 284

webpage, 2016. https://github.com/ 285

aappleby/smhasher/wiki/, [Online, ac- 286

cessed: 3. 5. 2016]. 287

[3] Geoff Pike. Cityhash: Fast hash functions for 288

strings. Standford university class slides, October 289

2012. 290

[4] Geoff Pike. Google open source blog, 291

2014. http://google-opensource. 292

blogspot.cz/2014/03/ 293

introducing-farmhash.html, [On- 294

line, accessed: 4. 10. 2016]. 295

[5] Bohdan S. Majewski Zbigniew J. Czech, 296

George Havas. Fundamental study: Perfect hash- 297

ing. pages 1–143, 1997. 298

[6] Lukáš Sekanina. Evolučnı́ hardware. Academia, 299

2009. 300

[7] Mustafa Safdari. Evolving universal hash func- 301

tions using genetic algorithms. In Proceedings of 302

the 11th Genetic and Evolutionary Computation 303

Conference, pages 2729–2732, New York, 2009. 304

[8] César Estébanez, Yago Saez, Gustavo Recio, and 305

Pedro Isasi. Automatic design of noncrypto- 306

graphic hash functions using genetic program- 307

ming. Computational Intelligence, 30(4):798– 308

831, 2014. 309

[9] Ivan Damgård. A design principle for hash func- 310

tions. In CRYPTO ’89: Proceedings of the 311

0 50 100 150 200
5,180

5,200

5,220

5,240

5,260

5,280

5,300

5,320

Generation

Su
cc

es
sf

ul
ly

ha
sh

ed

Elitist Random Search
Random Search
MurmurHash3

Proposed IPHash

0 50 100 150 200
Generation

Proposed IPHash
Diversity of runs

Figure 2. Evolved hash functions in comparison with conventional hash functions in terms of collision
resistance.

fo0,o1,o2,o3 = (((ℜ∧ (o1 ∧o3))+(o2 ∗ℜ))+

((ℜ ≫ o1)≫ (((o1 ∗o0)≫ o1)∗ (ℜ ≫ o1))))
(5)

In the same figure two versions of random search181

algorithm are put in comparison. The elitist random182

search performs even better than our genetic program-183

ming algorithm, however we should keep in mind, that184

the random search algorithm has been greatly influ-185

enced by the computational tree, terminal and non-186

terminal sets we have chosen. This outcome provides187

us with interesting conclusion that the state space as188

described by selected encoding and collision ratio fit-189

ness is more suitable for random search rather than190

genetic programming.191

In the second experiment have investigated the im-192

pact of various population sizes and individual depths193

in zero generation. Also we have studied how various194

terminal and non-terminal sets affect resulting fitness195

values.196

In the first part, we have selected our population197

sizes from the set of powers of two. Smallest pop-198

ulation size was set to eight individuals, biggest to199

1024 individuals. Initial depth will be selected from200

interval 〈2,6〉 with step of size 1. All other parame-201

ters remain unchanged. As we can see in the Figure 3202

with exception of very shallow individuals and small203

generations, results are stable. The best individual that204

managed to hash 5314 addresses settled at population205

size 64 and depth 3. However bigger populations or206

deeper trees offer similar collision numbers and the207

deviations seem insignificant. On the other hand we208

should keep in mind that in terms of high performance 209

applications difference of ten collision might become 210

very significant. 211

8 16 32 64 128256512 2
3

4
5

65,240
5,260
5,280
5,300
5,320

Population size
Initial depth

Su
cc

es
sf

ul
ly

ha
sh

ed

Figure 3. Number of successfully hashed addresses in
relation to population size and initial depth.

In the second part we have chosen several alterna- 212

tives to the basic setup (see Table 2) to be executed 213

and their output studied. As expected the loss of ad- 214

ditional randomness in form of ephemeral random 215

constants negatively influenced the output. However 216

adding ones’ complement did not improve results in 217

spite of the fact that the ones complement and XOR 218

forms a complete logic set thus being able to compute 219

any possible logic function. The addition is popular 220

among hashing experts but as expected [8] its removal 221

didn’t have any significant influence on the results. 222

The rotation (shift) operators is always part of the core 223

of any good hash algorithm. The more interesting is 224

the result of rotation removal experiment where result- 225

ing individual quality didn’t suffer as significantly as 226

1.

1.

2.

3.

2.

3.

Hash functions are evolved using the
genetic programming algorithm.
Individuals are represented by
an abstract syntax tree where nodes
are represented by common hashing
operations. Leafs may represent and
IP address octet or an ephemeral
random constant.

Genetic operators are used to
breed new population. Individ-
uals are selected for reproduc-
tion by the tournament selec-
tion. Subtree crossover and
subtree mutation reproduction
operators are used.

Example of an evolved hash function. Such function is small in terms of operation count but well performing
on the given dataset.

Comparison of the proposed IPHash genetic programming algorithm with random search algorithms and the
human-created MurmurHash and diversity of the experiment. The result is an average of 50 independent runs.

The relation of various terminal and non-terminal sets to the resulting average (50 runs) best �tness. If the
multiplication (*), addition (+) and rotation (>>>) are preserved, evolved hash functions are well performing.

