
http://excel.fit.vutbr.cz

On the Generative Power of CD Grammar Systems
With Scattered Context Components
Jakub Martiško*, Alexander Meduna**

Abstract
There is a long time open problem regarding the generative power of scattered context grammars
without erasing rules. This problem tries to compare their generative power with context-sensitive
grammars. In this paper, modified version of this problem will be presented. This modified version
combines scattered context grammars with another model — grammar systems. It will be shown
that when considering this modified version of the problem, those two models have indeed same
generative power. Furthermore, it will be shown that this property holds even for grammar systems
with only two components where each component contains only scattered context rules with degree
of two or less. Even though this does not solve the original problem, this modified version can be
useful when solving the standard variant of the problem.

Keywords: Context-Sensitive Grammars — Scattered Context Grammars — Grammar Systems —
Formal Languages — Generative Power

Supplementary Material: N/A

*imartisko@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology
**meduna@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Scattered context grammars (SCG) were first intro-
duced in the late sixties by S. Greibach and J. Hopcroft
in [1]. Scattered context grammar works as paral-
lel rewriting model that during each derivation step
rewrites finite number of noterminals in the current
sentential form. Each of these rewritings is done in
a context-free way. This model may thus serve as a
compromise between relative simplicity of context-
free grammars and generative power of more complex
models.

Even though the scattered context grammars are
quite old, there is still open problem1 regarding their
generative power [2]. It is known that SCGs with ε-
rules are as powerful as Turing Machines. As for the
SCGs without ε-rules, it is known that the family of
languages generated by them is a subset of family of
context-sensitive languages. It is however not known
whether this subset is proper. In this paper, we will
propose a modification of this problem which uses

1This problem is known as L (PSCG) = L (CS) problem.

combination of SCGs and grammar systems. We will
show, that this combined model has the same genera-
tive power as context-sensitive languages.

Furthermore, we will show that this property holds
even when limiting the number of components of gram-
mar system to two. Similarly, the scattered context de-
gree of all of the rules of those two components need
to be of degree of no more than two.

2. Preliminaries
We assume that the reader is familiar with formal lan-
guage theory 2.

A Scattered context grammar (SCG) is a quadru-
ple G = (N,T,P,S), where N and T are alphabets of
nonterminal and terminal symbols respectively, where
N ∩ T = /0, further let V = N ∪ T . S ∈ N is start-
ing symbol. P is a nonempty finite set of rules of
the form (A1, . . . ,An) → (α1, . . .αn), where Ai ∈ N,
αi ∈ V ∗,1 ≤ i ≤ n,n ≥ 1. Let u,v ∈ V ∗, relation of

2See [3] for details.

http://excel.fit.vutbr.cz
mailto:imartisko@fit.vutbr.cz
mailto:meduna@stud.fit.vutbr.cz

direct derivation, denoted as u⇒ v, is defined such
that following holds:

1. u = u1A1u2A2u3 . . .unAnun+1
2. v = u1α1u2α2u3 . . .unαnun+1
3. (A1,A2,A3, . . . ,An)→ (α1,α2,α3, . . . ,αn) ∈ P

where ui ∈V ∗ for 1≤ i≤ n+1. Language generated
by SCG G is defined as L(G) = {x : S⇒∗ x,x ∈ T ∗},
where⇒∗ denotes transitive and reflexive closure and
⇒+ transitive closure of⇒. A SCG grammar is said
to be propagating (PSCG) iff each rule p ∈ P satisfies
(A1, . . . ,An)→ (α1, . . .αn)αi 6= ε,∀i : 1 ≤ i ≤ n. By
L (SCG) and L (PSCG), the families of languages
generated by SCGs and PSCGs respectively is denoted.

A Context-sensitive grammar (CSG) is a quadru-
ple G = (N,T,P,S), where N and T are alphabets of
nonterminal and terminal symbols respectively, where
N ∩ T = /0, further let V = N ∪ T . S ∈ N is starting
symbol. P is a nonempty finite set of rules of the form
αAβ → αγβ , where A ∈ N, α,β ,γ ∈ V ∗ and γ 6= ε .
Let u,v ∈V ∗, relation of direct derivation, denoted as
u⇒ v, is defined such that following holds:

1. u = u1αAβu2
2. v = u1αγβu2
3. αAβ → αγβ ∈ P

where u1,u2,α,β ,γ ∈V ∗,A ∈ N, γ 6= ε . The language
generated by CSG G is defined as L(G) = {x : S⇒∗
x,x ∈ T ∗}, where ⇒∗ denotes transitive and reflex-
ive closure and ⇒+ transitive closure of ⇒. Lan-
guage generated by CSG G = (N,T,P,S) is defind
as L(G) = {x : S⇒∗ x,x ∈ T ∗}. By L (CS) the family
of languages generated by CSGs is denoted.

A CSG is in Kuroda Normal form, if the set P
contains only rules of one of the following forms:

1. AB→CD
2. A→CD
3. A→C
4. A→ a

where A,B,C,D ∈ N and a ∈ T . It has been proven [3]
that every CSG can be transformed into an equivalent
grammar in Kuroda normal form. Without loss of
generality, further on, we will assume only CSGs that
are in this form.

A cooperating distributed grammar system (CDGS)
of degree n is n+3 tuple G = (N,T,S,P1,P2, . . . ,Pn),
where N and T are alphabets of nonterminal and termi-
nal symbols respectively, where N∩T = /0, further let
V = N∪T . S ∈ N is starting symbol. Pi,1≤ i≤ n are
nonempty finite sets (called components) of rewriting
rules over V . For a CDGS G = (N,T,S,P1,P2, . . . ,Pn),

the terminating (t) derivation by the i-th component,
denoted as ⇒Pi

t is defined as u⇒Pi
tv iff u⇒∗Pi

v and
there is no z ∈V ∗ such that v⇒Pi z. The language gen-
erated by CDGS G = (N,T,S,P1,P2, . . . ,Pn) working
in t mode is defined as L(G) = {x : S⇒Pi1

tx1 ⇒Pi2
tx2

. . . ⇒Pim
tx,m≥ 1,1≤ i j ≤ n,1≤ j ≤ m,x ∈ T ∗}.

In this paper, CDGS with propagating scattered
context rules (SCGS) and CDGS with context-sensitive
rules will be considered.

3. Main Results
In this section, the equality of L (SCGS) and L (CS)
will be shown.

Lemma 1. L (SCGS)⊆L (CS)

Proof. [4] shows, that any scattered context grammar
can be simulated by context-sensitive grammar. [5]
further shows that any CDGS with context-sensitive
components working in t mode can be transformed to
equivalent CSG. Based on those two facts, it is easy to
show that any SCGS can be simulated by CSG.

Lemma 2. L (CS)⊆L (SCGS)

Suppose CSG G = (N,T,P,S) satisfying Kuroda
normal form. An equivalent SCGS Γ=(NGS,T,+S,P1,P2)
can be created using the following constructions. First,
let NGS be union of N∪{!} (! /∈ N∪T) and following
sets:

NT ={a′ : ∀a ∈ T}
N+ ={+X : ∀X ∈ N∪NT}
N− ={−X : ∀X ∈ N∪NT}
N∗ ={∗X : ∀X ∈ N∪NT}

N f irst =N+∪N−∪N∗
NCF ={|X | : ∀X ∈ N∪N f irst}

NCS ={|X< : ∀X ∈ N∪N f irst}∪{>X | : ∀X ∈ N}

Ncur ={X∧< : ∀X ∈ N∪N f irst}∪{X∧| : ∀X ∈ N∪N f irst}.

Further on, we call subsets of NCF , NCS and Ncur

constructed using the set N+ as NCF+, NCS+ and Ncur+,
respectively. We will use similar naming convention
for subsets constructed using N− and N∗.

Based on these sets, we can now proceed with the
construction of set P1 which is defined as an union of
following sets:

P1
T ={(+X)→ (∗X) : ∀X ∈ N∪NT}

∪{(∗X , a
′
)→ (∗X ,a) :

∀X ∈ N∪NT ,∀ a
′ ∈ NT}

∪{(∗a′)→ (a) : ∀ a
′ ∈ NT}

P1
AtoBC ={(+X ,A)→ (−X |, |B| |C|) :

∀X ∈ NT ∪N,∀p ∈ P, p = A→ BC}
∪{(+A)→ (−B| |C|) : ∀p ∈ P, p = A→ BC}

P1
AtoB ={(+X ,A)→ (−X |, |B|) :

∀X ∈ NT ∪N,∀p ∈ P, p = A→ B}
∪{(+A)→ (−B|) : ∀p ∈ P, p = A→ B}

P1
Atoa ={(+X ,A)→ (−X |, |a

′

|) :

∀X ∈ NT ∪N,∀p ∈ P, p = A→ a}

∪{(+A)→ (−|a
′

|) : ∀p ∈ P, p = A→ B}

P1
ABtoCD ={(+X ,A,B)→ (−X |, |C<,>D|) :

∀X ∈ NT ∪N,∀p ∈ P, p = AB→CD}
∪{(+A,B)→ (−C<,>D|) :

∀p ∈ P, p = AB→CD}
P1

phase2 ={(X ,B)→ (X , |B|) :

∀B ∈ N∪NT ,X ∈ NCS−∪NCF−}

Last set that has to be defined is P2. Again, this set
is created as an union of several subsets:

P2
init ={(−X |)→ (+X∧|) : ∀X ∈ NT ∪N}
∪{(−X<)→ (+X∧<) : ∀X ∈ NT ∪N}

P2
check ={(A∧| , |B|)→ (A,B∧|) : ∀X ,A,B ∈ NT ∪N}

∪{(A∧<,>B|)→ (A,B∧|) : ∀X ,A,B ∈ NT ∪N}

P2
check f ={(+A∧| , |B|)→ (+A,B∧|) : ∀A,B ∈ NT ∪N}

∪{(+A∧<,>B|)→ (+A,B∧|) : ∀A,B ∈ NT ∪N}

P2
end ={(+A∧)→ (+A) : ∀A ∈ NT ∪N}
∪{(+A,B∧|)→ (+A,B) : ∀A,B ∈ NT ∪N}
∪{(+A∧|)→ (+A) : ∀A ∈ NT ∪N}

P2
block ={(|X |)→ (!) : ∀X ∈ NT ∪N}

We will now briefly describe, how the resulting
SCGS Γ simulates the input CSG G. The system con-
sists of two components, both working in t mode. The
computation of Γ consists of two phases. During the
first one, all terminals are represented by a nontermi-
nal variant of themselves. During the second phase,
all nonterminals are rewritten to their terminal variant.
The simulation itself takes place during the first phase.

The simulation in Γ of each application of one rule
of G consists of two parts. Firstly, the first component
applies the selected rule using the modified nontermi-
nals contained in the sets NCS and NCF . Symbols of

the type |X< denote, that the rewriting is done in a
context-sensitive way and that the remaining symbol
on the right hand side of the rule should appear im-
mediately right of the symbol. Similarly >X | denotes,
that the rest of the right hand side of the rule should
appear immediately left of the symbol. Symbols of the
form |X | then represent cotext free rewriting. After the
application of the rule, the first component rewrites
all remaining symbols to their context-free variant and
then deactivates. This is done using the rules of the
set P1

phase2. The fact, that only one of the rules was ap-
plied is checked using the first symbol of the sentential
form. This symbol is of the form +X or −X (plus the
context-sensitive and context-free versions), where the
signs + and − indicate, whether input rule should be
applied, or remaining symbols should be rewritten.

The second component then checks, whether the
first component applied the rule correctly. This is
done using the special ∧ mark. This symbol indicates,
which symbol is currently checked, we will call this
symbol current symbol. Symbols are checked in pairs,
where the first symbol of the pair is the current symbol
and the second symbol is some symbol right of the
first one. During this check, the special marks (|,<,>)
on the adjacent sides of those symbols are checked
and removed and the ∧ mark is moved to the other
symbol of the pair. Since the first symbol of the pair
is always the current symbol, the ∧ moves from the
left side of the sentential form to the right, with no
way of returning back left. When all of the symbols
are checked, the second component is deactivated and
the first one simulates new rule. Since the components
have scattered context rules, it is not guaranteed that
adjacent symbols are always checked by the second
component. Because of this, set of rules P2

block is cre-
ated. When some of the symbols is skipped during the
checking phase, these rules will block the generation
of sentence by Γ.

The final phase, which rewrites all nonterminals
to terminals, is started by rewriting of the first symbol
+X to ∗X . Then for each symbol a

′
, there is a rule of

the form (∗X , a
′
)→ (∗X ,a), where a is corresponding

terminal symbol. Finally, the leftmost symbol itself
is rewritten to its terminal form. Since all the rules of
all components always check the first symbol, after
this step no further rewriting can be done and all non-
terminals that remain in the sentential form cannot be
removed. This phase is represented by set P1

T .

Example 1. Suppose CSG G = ({A,B,C,D,E},{b,c,
d, e},P,A) with rules P = {A→ BC,C→CD,BD→
DB,CD→ ED,B→ b,C → c,D→ d,E → e}. Ob-
serve that there is no sentential form that could be

generated by grammar G where the rule BD→ DB
could be aplied.

Based on the described constructions, equivalent
SCGS Γ = (NGS,T,+A,P1,P2) can be created. We will
now try to show, how would Γ simulate G. Because
the amount of rules and symbols created by the trans-
formation algorithm is quite large, we will not list
elements of these sets.

The only rule of G that has starting symbol on its
left hand side is A→ BC. Similarly, only rule applica-
ble on BC (we will ignore rules with terminals) is rule
C→ CD Derivation A⇒∗ BCD would be simulated
using following sequence of derivation steps:

+A⇒ −B| |C| [(+A)→ (−B| |C|) ∈ P1
AtoBC]

⇒ +B∧| |C| [(−B|)→ (+B∧|) ∈ P2
init]

⇒ +B C∧| [(+B∧| , |C|)→ (+B,C∧|) ∈ P2
check f]

⇒ +BC [(+B,C∧|)→ (+B,C) ∈ P2
end]

This way, the first rule is simulated. It is important to
note that since Γ works in t mode, rules from set P2 are
all applied “together”. The derivation would continue
using the following rules:

+BC⇒ −B| |C| |D| [(+B,C)→ (−B|, |C| |D|) ∈ P1
AtoBC]

⇒ +B∧| |C| |D| [(−B|)→ (+B∧|) ∈ P2
init]

⇒ +B C∧| |D| [(+B∧| , |C|)→ (+B,C∧|) ∈ P2
check f]

⇒ +BC D∧| [(C∧| , |D|)→ (C,D∧|) ∈ P2
check]

⇒ +BCD [(+B,D∧|)→ (+B,D) ∈ P2
end]

As was mentioned before, rule BD→ DB can in
fact never be applied by the grammar G. Suppose
sentential form +BCD of the Γ. Simulation of this rule
would lead to the following derivation:

+BCD⇒ −D<C>B| [(+B,D)→ (−D<,>B|) ∈ P1
ABtoCD]

⇒ −D< |C|>B| [(−D<,C)→ (−D<, |C|) ∈ P1
phase2]

⇒ +D∧< |C|>B| [(−D<)→ (+D∧<) ∈ P2
init]

⇒ +D |C| B
∧
| [(+D∧<,>B|)→ (+D,B∧|) ∈ P2

check f]

⇒ +B |C|D [(+B,D∧|)→ (+B,D) ∈ P2
end]

⇒ +B!D [(B)→ (!) ∈ P2
block]

Again, each component of Γ works in t mode. This
ensures, that any symbols skipped during the checking
phase, will be replaced by blocking symbols (!) before
the second component of Γ deactivates.

On the other hand, rule CD→ ED can be applied.
The simulation of this rule works as follows:

+BCD⇒ −B| |E<>D| [(+B,C,D)→ (−B|, |E<,>D|) ∈ P1
ABtoCD]

⇒ +B∧| |E<>D| [(−B|)→ (+B∧|) ∈ P2
init]

⇒ +B E∧<>D| [(+B∧| , |E<)→ (+B,E∧<) ∈ P2
check f]

⇒ +BE D∧| [(E∧<,>D|)→ (E,D∧|) ∈ P2
check]

⇒ +BED [(+B,D∧|)→ (+B,D) ∈ P2
end]

We will now sketch the proof, that the algorithm
described before really creates SCGS equivalent to the
input CSG.

Claim 1. In any sentential form, there is always at
most one symbol marked with any of ∗,−,+.

Proof. Observe, that no rule contains more than one
symbol marked with any of the ∗,−,+ on the right
hand side. Further observe that if any marked symbol
does appear on the right hand side of a rule, there is
also a marked symbol on the left hand side of the same
rule. Thus no new marked symbols can be introduced
into the sentential form.

Claim 2. Any derivation that generates a sentence
ends with a sequence of rules of the form p1 p21 . . . p2n p3,
where p1, p2i , p3 ∈ P1

T ,1≤ i≤ n,n≥ 0, where p1, p2i

and p3 are from the first, second and third subset of P1
T ,

respectively. No rule from the set P1
T is applied before

this sequence.

Proof. Since the set P1
T is the only set which contains

terminals on the right hand side of the rules, it is ob-
vious that rules of this set have to be used during any
successful derivation. Since the rules in the second and
third subset of P1

T require the presence of symbol ∗X ,
where X ∈ N∪NT and this symbol can be introduced
only by the rules of the first subset of P1

T it is obvi-
ous that any rules from P1

T must be applied after the
application of some p1. Similarly, some p3 replaces
the symbol ∗X with corresponding terminal, thus re-
moving ∗ mark from the sentential form. Therefore,
after the application of p3 no other rule from P1

T can
be applied.

Suppose the application of sequence of rules of
the form p1 p21 . . . p2m . The sentential form after this
application must be of the from ∗X X1 . . .Xk, where
none of the symbols Xi,1≤ i≤ k is marked with any
of +,−,∗ (claim 1). Only sets of rules, that do not
require any marked symbol on the left hand side of its
rules are sets P2

check and P2
block. Usage of any from the

set P2
block leads to introduction of blocking symbol and

the system will thus not generate any sentence. Even
though the rules from P2

check do not require any of the

marks +,−,∗ in the sentential form they require the ∧
mark to be present. This mark can only apear during
the activation of the second component and its intro-
duction requires symbol marked with −. Furthermore,
the ∧ mark is removed from the sentential form during
the same activation of the second component (this will
be shown in claim 5). Thus only the rules from P1

T can
be applied after the application of p1.

Since we have just shown that the rules of the
subset P1

T must be applied right before the end of the
simulation and no sooner, we ignore this subset in
further proofs.

Claim 3. The first component of Γ rewrites senten-
tial forms of the form +X α to a string of one of the
following forms

1. −Y |β
2. −Y<γ

where X ,Y ∈ N ∪NT , α ∈ (N ∪NT)
∗, β ,γ ∈ (NCS ∪

NCF)
∗ (such that claim 1 holds) where one of the fol-

lowing is true:

(a) β ∈ (NCF)
∗

(b) β =Y0 . . . |U< . . .>V | . . .Yn, where Yi ∈NCF ,0≤
i≤ n and |U<,>V | ∈ NCS

and γ =Y0 . . .>V | . . .Yn, where Yi ∈NCF ,0≤ i≤ n and
>V | ∈ NCS.

Proof. Suppose sentential form +X α defined as above,
where α = X0 . . .Xn. Since there is no symbol from the
alphabet Ncur ∪N− only rules of the first component
can be used.

In +X α one of the following derivation steps has
to be applied in Γ (each derivation corresponds to one
subset of the rules of the first component of Γ):

1. +X X0 . . .Xi−1AXi+1 . . .Xn

⇒ −X |X0 . . .Xi−1 |B| |C|Xi+1 . . .Xn

2. +AX0 . . .Xn

⇒ −B| |C|X0 . . .Xn

3. +X X0 . . .Xi−1AXi+1 . . .Xn

⇒ −X |X0 . . .Xi−1 |B|Xi+1 . . .Xn

4. +AX0 . . .Xn

⇒ −B|X0 . . .Xn

5. +X X0 . . .Xi−1AXi+1 . . .Xn

⇒ −X |X0 . . .Xi−1 |a
′

|Xi+1 . . .Xn

6. +AX0 . . .Xn

⇒ −
|a
′

|X0 . . .Xn

7. +X X0 . . .Xi−1AδBXi+1 . . .Xn

⇒ −X |X0 . . .Xi−1 |C<δ >D|Xi+1 . . .Xn

8. +AδBX0 . . .Xn

⇒ −C<δ >D|X0 . . .Xn

where δ ∈ (N∪NT)
∗. Observe that each of the gener-

ated string is in one of the following forms:

• −X |δ1Bδ2Cδ3 (1-7)
• −X<δ1 >D|δ2 (8)

where δ1,δ2,δ3 ∈ (N∪NT)
∗, D∈NCS (the second sub-

set) and either B,C ∈ NCF or B ∈ NCS (first subset) and
C ∈ NCS (the second subset).

After this first rule is applied, the sentential form
contains symbol marked with −. Since the compo-
nents of Γ work in t mode, rules of the first com-
ponent have to be applied as long as there are some
symbols that can be rewritten. This means that the
rules from the set P1

phase2 have to be used now. Since
the δ1,δ2,δ3 ∈ (N ∪NT)

∗ and left hand sides of sec-
ond components of rules from set P1

phase2 are defined
for all symbols in N ∪NT . Substring δ1 = Z0 . . .Zn,
Zi ∈ N ∪NT is rewritten to δ

′
1 = |Z0| . . . |Zn|, Zi ∈ N ∪

NT ,0 ≤ i ≤ n. The same applies to δ2,δ3. Using the
P1

phase2 we thus obtain one of the following sentential
forms:

−X |δ1Bδ2Cδ3⇒∗ −Y |β
−X<δ1 >D|δ2⇒∗ −Y<γ

Claim 4. During its activation, the first component
applies at most a single rule of the simulated CSG.
This follows from claim 3 and its proof.

Claim 5. The second component of Γ rewrites any
sentential form of the form −X | |X0| . . . |Xn|, where Xi ∈
N∪NT∀i : 0≤ i≤ n to string of the form +X X1 . . .Xn.

Basic Idea 1 (Claim 5). Observe that the input string
contains no symbols marked with + or ∧. Only some
rule from the set P2

init can be initially used. Further-
more, this rule must be from the first subset of this
set (the first symbol of the sentential form is ”context-
free variant”). Application of this rule rewrites the −
mark of the first symbol to + and introduces ∧ mark
to the sentential form, specifically to its first symbol.
Since this rule rewrites − to +, no rule from this set
can be used during this activation of the component.
From now on, there will always be exactly one symbol
marked with ∧ in the sentential form until the deactiva-
tion of this component. This is based on the fact, that
no rule contains more than single ∧ on the right hand
side of the rule and furthermore, all rules that contain
∧ on the right hand side also contain this mark on the

left hand side. This means that the mark can never be
”duplicated” and can only be passed from symbol to
symbol or erased. Observe that this ”passing” of the
∧ mark can occur only from a symbol to some symbol
right of it, never to the left of it. During this passing,
| marks are gradually removed from symbols marked
with ∧. Because ∧ moves always to the right, together
with the fact, that no new ∧ mark can be introduced
to the sentential form, any symbols skipped during
this phase will remain in their ”context-free” form.
When the ∧ reaches the last symbol of the sentential
form, the mark is removed. Since the component works
in t mode, all possible rules must be applied before
the deactivation. This means that any symbol still in
context-free form is rewritten to the blocking symbol
by a rule from P2

block.

Claim 6. The second component of Γ rewrites any
string of the form −X< |X0| . . . |X j−1|>X j| . . . |Xn|, where
Xi ∈N∪NT ,∀i : 0≤ i≤ n to string of the form +X X1 . . .Xn

if and only if |X0| . . . |X j−1| = ε , otherwise introduces
blocking symbols.

Claim 7. The second component of Γ rewrites any
string of the form −X | |X0| . . . |X j< |X j+1| . . . |Xk−1|>Xk|
. . . |Xn|, where Xi ∈ N ∪NT∀i : 0 ≤ i ≤ n to string of
the form +X X1 . . .Xn if and only if |X j+1| . . . |Xk−1| =
ε ,otherwise introduces blocking symbols.

Proof. Proof of claims 6 and 7 are similar to proof of
claim 5 and they are left to the reader.

Based on the previous claims, it is easy to show
that each simulation of a rule of G consists of a single
activation of the first component followed by a single
activation of the second component of Γ. If the sim-
ulated context-sensitive rule is applied in a scattered
way, blocking symbols are introduced to the senten-
tial form, otherwise the sentential form is prepared
for the simulation of a next rule. In the end, all non-
blocking symbols are rewritten to terminals thus creat-
ing a sentence of the simulated language. Therefore,
L(G) = L(Γ).

Theorem 1. L (SCGS) = L (CS)

Proof. This is implied by lemmas 1 and 2.

Theorem 2. Any context-sensitive language can be
generated by SCGS, where each scattered context rule
has at most two components.

Basic Idea 2. Obviously, the only set that does not
meet this criterion is P1

ABtoCD and specifically its first
subset. Rules of this subset can be simulated by intro-
duction of some auxiliary rules and symbols. Suppose

rule (+X ,A,B)→ (−X |, |A<,>B|) and sentential form
+X AB. This rule can be simulated using those auxil-
iary rules in a following way:

+X AB⇒ ∼
|X |

1
|C<B⇒ ∼

|X | |C<
2
>D|⇒

−X | |C<>D|,

where always pairs of symbols are rewritten during
each derivation step. Formal proof is left to the reader.

4. Conclusions
The modified version of L (PSCG) = L (CS) prob-
lem was discussed in this paper. This modification
deals with combination of CD grammar systems with
propagating scattered context components and com-
pares their generative power with context-sensitive
grammars. The algorithm that constructs grammar
system which simulates given context-sensitive gram-
mar has been described. Based on this algorithm, it is
shown that those two models have the same generative
power. Furthermore it is shown that this property holds
even for the most simple variant of these grammar
systems — those using only two components, where
each scattered context rule is of degree of at most two.
While this modified version does not answer the origi-
nal L (PSCG) = L (CS) problem, it might be useful
when solving it.

Acknowledgements
Authors would like to thank Zbyněk Křivka for his
useful comments.

References
[1] Sheila Greibach and John Hopcroft. Scattered con-

text grammars. Journal of Computer and System
Sciences, 3(3):233 – 247, 1969.

[2] A. Meduna and P. Zemek. Regulated Grammars
and Automata. Springer New York, 2014.

[3] A. Meduna. Automata and Languages: Theory
and Applications. Springer London, 2000.

[4] J. Dassow and G. Păun. Regulated rewriting in
formal language theory. EATCS monographs on
theoretical computer science. Springer, 1989.

[5] Erzsebet Csuhaj-Varju, Josef Kelemen, Gheorghe
Paun, and Jurgen Dassow. Grammar systems: A
grammatical approach to distribution and coopera-
tion. Inc., Newark, NJ, 1994.

	Introduction
	Preliminaries
	Main Results
	Conclusions
	References

