
http://excel.fit.vutbr.cz

RINA Simulator: Creating Distributed Applications
in RINA Architecture
Bc. Kamil Jeřábek*

Abstract
This paper is focused on application approach in RINA Architecture, on its design and implementa-
tion in RINA Simulator in OMNeT++. The work is carried out within research project PRISTINE
within which the RINA Simulator is developed. Contribution of this work is to extend the functionality
of the simulator by a programming interface and structure for creating distributed applications.
There is also presented simple design of Application Programming Interface.

Keywords: OMNeT++ — RINA Architecture — Distributed Application — RINA Simulator

Supplementary Material: Downloadable Code
*xjerab18@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Recursive InterNetwork Architecture (RINA) is new
network architecture and its author is John Day. This
architecture solves inherently some drawbacks of cur-
rent networks such as mobility, multihoming and more.

RINA also presupposes that every application is
distributed application. This brings easier approach for
creating distributed applications. It is also possible to
create distributed applications over current computer
networks based on TCP/IP for example by using Open
MPI [1]. But it is more complicated than it should be
in RINA.

The paper is focused on design and creation of
model of Application Layer. The main topics are de-
sign of communication Application Programming In-
terface (API), creation and management of application
connections, isolation of resources.

The aim of the work is to extend current model
of application layer of RINA architecture in RINA
Simulator (RINASim) in OMNeT++. The RINASim
is developed on Faculty of Information Technology

on Brno University of Technology within PRISTINE
project.

The RINASim contained in Application Processes
of application layer only one communication entity,
the entity was only used to generate traffic for testing
bottom layers. This work designs and implements
core modules that provides functionality for creation
of distributed applications. The core modules are RIB
Daemon, Application Entities, Application Process,
Enrollment module. The meaning and functionality
is described in more details in following chapters. A
part of this work is also design and implementation
of API between modules as well as API at top a top
level to program applications easier way. This includes
also dynamic creation of modules. It should bring less
configuration.

The following chapter 2 contains only brief de-
scription of RINA Architecture. Also it is more fo-
cused on Application Layer called Distributed Applica-
tion Facility (DAF), its parts and functionality. Chapter
3 describes design and implementation of each new

http://excel.fit.vutbr.cz
https://github.com/kvetak/RINA
mailto:xjerab18@stud.fit.vutbr.cz


module described in Chapter 2. Chapter 4 includes
brief description of validation of new implemented
parts.

The following chapters came out from RINA Ar-
chitecture Specifications [2],[3],[4],[5],[6], the book
[7] by John Day and discussions with John Day and
Steve Bunch.

2. State of the Art
The Recursive InterNetwork Architecture is distributed
network architecture. This architecture is based on
the presumption that computer networking is just In-
ter Process Communication (IPC). The main building
block of the architecture is a single repeating layer
called Distributed IPC Facility (DIF). Each occurence
of the layer has the same mechanisms, but from layer
to layer it can have different policies. The DIF in-
cludes IPC Processes running on different machines
that works together to provide flow services to Appli-
cation Processes (AP). The RINA supports without
need of creating any extra mobility mechanisms, mul-
tihoming and Quality of Service. There is only one
protocol, called Common Distributed Application Pro-
tocol (CDAP) which provides communication between
two Application Processes (AP).

Figure 1. DIF, DAF, DAP with IPCP processes [8]

2.1 Distributed Application Facility
A top layer called Distributed Application Facility
(DAF) is an application layer. This layer consist of AP
that are instantiations of a program intended for some
purpose, which is executed in a processing system. An
AP contains one or more Application Entities (AE).

2.2 Application Entity
The Application Entity is task within an application
process that is concerned with the interactions with
IPC thus providing communication with other AP.[2]
From the point of OSI Model the AE implements an
application protocol. In RINA model, it is more likely

shared understanding of objects on which they can
operate.

2.3 RIB Daemon
The Resource Information Base (RIB) is distributed
database that is maintained by every single member
of a DIF and a DAF. The RIB should be compared to
SNMPs Management Information Base that is used for
the similar purpose in current TCP/IP based networks,
to store objects. The RIB contains information about
neighbors, connections, application and user specified
data.

The RIB Daemon is responsible for memory man-
agement within a DAF. It is common for all subtasks
or threads of application process participating in dis-
tributed application. Because of every single subtask
or thread may require data from the others. It could be
asked for an information once, more time (it depends
on events) or periodically. The RIB Daemon according
to the requests may optimize the information. It main-
tains database synchronization rules (e.g., commits on
update).

The RIB Daemon should be able to provide data
within a DAP to programming applications as it would
be on a single system available with possibly no de-
lay. Application tasks of DAF members could register
subscription to RIB Daemon to take information or
to distribute data to one or more members also with
defining whether on request or periodically. According
to this the RIB Daemon make measurements to reduce
the amount of data to be send.

The RIB Daemon works as a gate to access RIB
database. The RIB Daemon should provide only rele-
vant information to tasks.

Each AE have to authenticate wheather it can cre-
ate connection, this is described in more detail in 2.5.
In addition each different AE can access the objects
that are bound to or intended to be used by this AE.
Also different instances of the same AE may have ac-
cess to the same objects. The AE instances also may
not have access to objects of different AE instances
of the same AE. This also work the same way for AP
instances.

2.4 Common Distributed Application Protocol
The Common Distributed Application Protocol (CDAP)
is the only required protocol for the communication
between application processes.

From the point of view of the application, there
are only six fundamental functions that application can
perform on objects. These operations are create/delete,
read/write and start/stop. More operations are not
needed for communication. All other manipulations



does not depend on communication, but it depends on
manipulation with data in applications.

2.5 Communication
AE provides communication between two APs. Ev-
ery communication between two AE consists of three
phases: Common Application Connection Establish-
ment (CACE), Authentication, Application Data Trans-
fer Phase.

2.5.1 Connection
The CACE phase is showed on figure 2. It is the first
communication. Application connection between two
AEs is established during this phase. It consist of

Figure 2. Connection establishment[3]

CDAP connect message exchanges (depicted in Table
1), that create application connection between two AEs.
CDAP Connect messages contains authentication. It is
also possible to extend this authentication mechanisms
and use more authentication exchanges if needed.

Table 1. CDAP Messages used while CACE phase

Opcode Description

M CONNECT Initiate message to create
connection from requesting AP,
carries authentication

M CONNECT R Response message as an reaction
on the previous message,
carries response

2.5.2 Enrollment
There is also Enrollment Phase that takes place when
Application Process tries to connect to DIF for the
first time or it is reconnecting due to connection lost.
Enrollment phase occurs right after CACE Phase and
authentication. The purpose of Enrollment is to create
sufficient shared state within DAF. This means to get
information from AP that is member of DAF and to
which the AP is trying connect to. Then the member
Application Process have to distribute important data

to connecting AP. Also it is assigned one or more syn-
onyms (i.e., adresses) to connecting AP to use within
DAF. And there may be created one or more additional
connections with members of the DAF to support dis-
tributed RIB operations.

2.5.3 Data transfer
There are different data transfers that can occur. The
first one is interactions with RIB Daemon that provides
local access to shared objects stored in RIB database.
This should be the vast majority of traffic. The APs
may use the local RIB as a local memory. There should
be more approaches of actualization of objects in the
local RIB. As was said in section 2.3, RIB Daemon
can reduce the amount of data to be send. Some ap-
plications also do not need actual state of objects. In
that case, we use CDAP Messages to create/delete,
start/stop, write/read objects from RIB.

Another data transfer correspond to more tradi-
tional view of networked applications sending requests
and responds. It is direct CDAP exchanges between
APs. Or it can use encapsulating data directly to Pro-
tocol Data Units (PDU).

3. Design and Implementation

3.1 Design
Current state of RINASim lets us create one instantia-
tion of AP on any host and use functionality of lower
DIF IPC processes to provide connectivity. When
modeling in the OMNeT++ [9], the main concept is
in modules that are hierarchicaly structured and com-
municating with each other. Therefore, Application
Process Instance should be a module.

Figure 3. Design of Application Process

The figure contains all modules described earlier
in chapter 2. Each module must have communica-
tion API with different purpose because the modules
are communicating with each other to provide desired
functionality. There is also showed IPC Resource Man-
agement (IRM) module and its API. The description
of IRM is out of the scope of this thesis. The IRM



module is already provided in simulator and it have to
be used in this design.

3.2 Implementation
The modules in OMNeT++ are communicating through
messages that may come from a module to another
module or could be sent from a module to a module
itself. In simulator, we use another approach, the com-
munication between modules are also done by emiting
signals just like in Qt [10].

All early mentioned tasks of Application Process
should be seen as a modules in Figure 4.

Figure 4. Structure of implemented modules in RINA
Simulator

3.2.1 Application Programming Interface
At the top of the application is Application Process
instance module, this module is implemented to pro-
vide an usable application API. This API is inspired
by API described in document [4]. The OMNeT++
is discrete event based simulator. Hence, there is a
difference between implemented and specified API.
All API calls are implemented in AP Instance and AP
Instance emits signals to AE Instance. While creating
application connection API call also dynamicaly cre-
ate requested AE instance that manages all sent and
received messages.

User of simulator may create own Application Pro-
cess by using this API. There is minimal need for

configuration in DAF except of specification which
AP instance to use.

3.2.2 Application Entity
Application Entity reacts on signals received from
AP Instance API. Reaction on signals should be pro-
grammed as callback function. This gives an opportu-
nity to create user specified AEs. The AE have also
API to communicate with RIB Daemon. And also
with Socket module that is responsible for buffering
sent and received messages. More detailed Socket
description is out of the scope of this paper.

3.2.3 Enrollment
Enrollment module dynamically create Management
Application Entity Instances and manages creating
of Application Connection, CACE phase and Enroll-
ment Phase. Enrollment module include finite state
machines for both phases as well as for both roles
(requestor and responder).

Management Application Entity is special AE only
to use as communicator controlled by DAF Manage-
ment tasks such as Enrollment.

4. Testing and Validation
The behavior of implemented model is deterministic.
The Enrollment and the CACE phase part of model
was tested on five different simulation examples repeat-
edly with the same result. The main factors on which
the emphasis was that each side react on a received
message by the transition to the appropriate state. And
wheather each side answers with the expected mes-
sage. Also if API calls dynamically create all required
modules and submodules.
In the Figure 5, there should be seen final states of

Figure 5. Enrollment communication and final states
both APs (AP: SourceA and AP:DestinationB) righ
after CACE and enrollment proceeded. The success-
fully created application connection is indicated by
state CACEConnectionStatus:established
and the enrollment by state DAFEnrollmentStat
us:enrolled. The figure also shows send and re-
ceived messages. This graph of communication is



taken from first AP: SourceA that participate in com-
munication as requestor. Simple scenario with only
two hosts and communicatio between them was used
here.

The other parts was tested in the similar way as
the Enrollment and the CACE. All requested modules
was successfully dynamically created and reacted as it
was designed.

5. Conclusions
This paper is focused on design and implementation
of Application Processes of Distributed Application
Facility (application layer) in RINASim. Application
Process contains couple of modules such as RIB Dae-
mon, Enrollment, Application Process itself and Ap-
plication Entities. These modules was not provided in
RINASim. The main benefit of this work is the under-
standing of behavior of all parts of Application Process,
their design in OMNeT++ and their implementation.

The significant part of the work is also design and
implementation of API that provides easier and uni-
form creation of applications in RINASim. It also pro-
vides better understanding of how to create distributed
applications in RINA Architecture.

The model was validated agains specifications and
communications with author of RINA Architecture.
The implementation of the model was successfully
validated as deterministic.

The implementation should be part of upcoming
official version of RINASim. RINASim is used world
wide by many researchers to help understand how
RINA works and to experiment with its model. Simu-
lator is still in development.

The future work should be focused on design of
RIB Daemon policies to distribute and manage objects
in RIB. Also to create more dynamic creation of every
layer.

Acknowledgements
This work is done as part of PRISTINE EU-7FP-ICT
project. I would like to thank Ing. Vladimı́r Veselý and
Ing. Marcel Marek for their support and suggestions
while this work.

References
[1] Open mpi site. https://www.open-mpi.

org/. Accessed: 2016-4-5.

[2] John Day. Patterns in network architecture - re-
cursive ipc network architecture - the interina
reference model - part 1: Basic concepts of dis-
tributed systems, 2013.

[3] John Day. Recursive ipc network architecture -
the interina reference model - part 2: Distributed
applications - chapter 1: Basic concepts of dis-
tributed applications, 2013.

[4] Steve Bunch. Cdap - common distributed appli-
cation protocol reference, December 2010. un-
published.

[5] John Day. Patterns in network architecture - re-
cursive ipc network architecture - basic enroll-
ment specification, 2012.

[6] Eleni Trouva Steve Bunch, John Day. Pat-
terns in network architecture - recursive
ipc network architecture - common appli-
cation connection establishment phase (ca-
cep). http://www.stud.fit.vutbr.
cz/˜xjerab18/CDAPSpec.pdf, 2012.

[7] John Day. Patterns in Network Architecture: A
Return to Fundamentals. Prentice Hall, 2008.
ISBN-13: 978-0-132-25242-3.

[8] Vladimı́r Veselý. A new dawn of naming, ad-
dressing and routing on the internet, 2016.

[9] Omnet++ community site. http://www.
omnetpp.org. Accessed: 2015-1-9.

[10] Qt site. http://www.qt.io/. Accessed:
2016-4-10.

https://www.open-mpi.org/
https://www.open-mpi.org/
http://www.stud.fit.vutbr.cz/~xjerab18/CDAPSpec.pdf
http://www.stud.fit.vutbr.cz/~xjerab18/CDAPSpec.pdf
http://www.omnetpp.org
http://www.omnetpp.org
http://www.qt.io/

	Introduction
	State of the Art
	Design and Implementation
	Testing and Validation
	Conclusions
	References

