
http://excel.fit.vutbr.cz

Symbolic Automata Library for Fast Prototyping
Michaela Bieliková

F I Tin{e,x,c} in{e,l}

not_in{@}

Abstract
Finite state automata are widely used in the fields of computer science such as formal verification,
system modelling, and natural language processing. However, the models representing the real
systems are complicated and may be defined upon big alphabets. In such cases, using classical
finite state automata is not efficient and more concise representation is needed. So called symbolic
automata are suitable formalism for this purpose since they employ predicates as transition labels.
One predicate represents set of symbol for which condition hold. Currently no library that allows
easy and intuitive manipulation with symbolic automata exists. As a result of this work, a Python
library symboliclib was created. It supports symbolic automata with different types of predicates as
well as classic finite automata working with symbols. The library is slower than more complex ands
optimised automata libraries when working with big automata. The inefficiency is mainly caused by
using Python which is a high level language slower than lower-level languages such as C or C++. A
trade off to this inefficiency is the simplicity and fast learning curve of use of the library.

Keywords: finite state automata, symbolic automata, transducers, symbolic transducers, efficient
algorithms, formal verification

Supplementary Material: Github Repository

*xbieli06@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Finite automata have syntactically simple but general
formalism. They are used in a wide range of applica-
tions in computer science, from regular expressions
or formal specification of various languages and pro-
tocols to natural language processing [1]. Another
application is formal verification for example to model
reachable configuration of the analysed system. Finite
transducers are used in formal verification to model
behaviour of an analysed system. They can be also
used in natural language processing where they can
describe phonological rules or form translation dictio-
naries [1, 2].

While finite automata are of practical use, when
large alphabets are used the computing demands quickly

increase. In practice, big alphabets are used in natu-
ral language processing, where an alphabet must con-
tain all symbols of a natural language. Languages
that derive from Latin alphabet such as English usu-
ally contain less than 30 symbols, but with the use
of diacritic, this number can double. This number
further increases in alphabets that have a symbol for
every syllable such as Chinese or Japanese or appli-
cations in which the symbols are words such as elec-
tronic dictionaries which often have more than 200K
words [2]. In these cases, an modification of automata
with predicates replacing elementary symbols can be
used. Predicates allow representing a set of symbols by
one expression and therefore can reduce the number of
transitions. This formalism is known as symbolic au-

http://excel.fit.vutbr.cz
https://github.com/Miskaaa/symboliclib
mailto:xbieli06@stud.fit.vutbr.cz

tomata and transducers. As it will be shown, the most
of the operations used on finite automata are easily
generalisable to symbolic automata and transducers.

Important operations over automata and transduc-
ers, such as minimisation and language inclusion (of-
ten used in formal verification) need the automata to
be determinised first, which can exponentially increase
the number of states or transitions. Fortunately, ad-
vanced algorithms that allow inclusion checking with-
out determinisation, exist. This paper employs two
heuristics for language inclusion checking algorithms
based on simulations and antichains [3]. Simulations is
the language preserving relation of each pair of states
and then eliminate the states which have the same be-
haviour for every possible input symbol. Antichains
study the relations of sets of automata states.

Currently there are libraries for symbolic automata.
Most of these libraries are either complex and opti-
mised or immature and still a prototype. The optimised
libraries have often complex inner representation of
automata designed with focus on efficient automata
processing which makes the representation less un-
derstandable for humans and therefore implies a slow
learning curve. This can slow down designing new
algorithms because of the time needed to study the
inner automata representation.

Therefore, the goal of this work is to design and
implement a new library that allows easy and fast proto-
typing of advanced algorithms for symbolic automata
and symbolic transducers. It should allow easy imple-
mentation of new operations as well as adding new
types of predicates. The library should also include
some advanced algorithms for automata such as al-
ready mentioned language inclusion checking employ-
ing simulations and antichains.

2. Theoretical background

This chapter contains theoretical background for this
paper. First, languages and classic finite automata
will be defined, then predicates are introduced. After
the definition of predicates, symbolic automata and
transducers are described. Proofs are not given but can
be found in the referenced literature [1, 4].

2.1 Languages
Let Σ be an al phabet — finite, nonempty set of sym-
bols. Common examples of alphabets include the bi-
nary alphabet Σ = {0,1} or an alphabet of lowercase
letters Σ = {a,b, ...,z}.

A word or a string w over Σ of length n is a finite
sequence of symbols w = a1 · · ·an, where ∀1 ≤ i ≤
n : ai ∈ Σ. An empty word is denoted as ε 6∈ Σ and

its length is 0. We define concatenation as an asso-
ciative binary operation on words over Σ represented
by the symbol · such that for two words u = a1 · · ·an

and v = b1 · · ·bm over Σ it holds that ε · u = u · ε = u
and u · v = a1 · · ·anb1 · · ·bm. Some strings from binary
alphabet Σ = {0,1} are for example 00, 111 and their
concatenation is 00111.

Σ∗ represents a set of all strings over Σ including
the empty word. A language L⊆ Σ∗ is a set of strings.
A language over binary alphabet is for example L =
{0,01,10,11,111}.

When L = Σ∗, L is called the universal language
over Σ.

2.2 Finite automata
A nondeterministic f inite automaton (NFA) is a tuple
A = (Σ,Q, I,F,δ), where:

• Σ is an alphabet
• Q is a finite set of states
• I ⊆ Q is a nonempty set of initial states
• F ⊆ Q is a set of final states
• δ ⊆ Q×Σ×Q is a transition relation. If q ∈

δ (p,a) we use p a−→ q to denote the transition
from the state p to the state q over the label a.

A deterministic f inite automaton (DFA) is a spe-
cial case of an NFA, where |I| = 1 and δ is a partial
function restricted such that p a−→ q∧ p a−→ q′⇒ q = q′.
Informally said, a DFA must have exactly one initial
state and cannot contain more transitions from one
state over the same symbol.

2.3 Finite transducer
Finite transducers differ from finite automata in tran-
sition labels. While finite automata labels contain only
one input symbol, both input and output symbols are
presented in finite transducers. Thus, transducers have
two alphabets — one consists of input symbols and
one of output symbols. Finite transducers can be infor-
mally described as translators which for a symbol in
input word generate a symbol in an output word.

The transitions relation for finite transducers is de-
fined as δ ⊆Q×(Σ : Ω)×Q. We use p a:b−→ q to denote
the transition from a state p to the state q reading the
input symbol a and generating the output symbol b.

A deterministic f inite transducer (DFT) must
have exactly one initial state and cannot contain more
transitions from one state over the same input symbol.

2.4 Predicates
A predicate π is a formula representing a subset of
Σ. Π denotes a given set of predicates such that, for

Figure 1. Symbolic automaton

each element a ∈ Σ there is a predicate representing
{a} (e.g. a or in{a}), and Π is effectively closed under
Boolean operations.

Predicates provided by the library by default are in-
spired by a Prolog library FSA [5]. Predicate in{a1, . . . ,
ai} represents subset {a1, . . . ,ai} ⊆ Σ and predicate
not in{a1, . . . ,ai} represents subset Σ−{a1, . . . ,ai}.

2.5 Symbolic automata
A symbolic automaton A is a tuple A=(Σ,Q, I,F,Π,δ),
where Π is a set of predicates over Σ and the transi-
tion relation is defined as δ ⊆ Q× (Π∪{ε})×Q. An
example of SA can be found in Figure 1.

Every SA with a finite alphabet can be transformed
into an NFA by removing Π and transforming each
transition into an equivalent set of transitions in which
the predicate is transformed to the corresponding ele-
mentary symbols of Σ. Since every SA can be trans-
formed into NFA, every operation applicable on finite
automata can be applied on symbolic automata af-
ter transformation to a finite automaton. Fortunately,
this transformation can be usually avoided because
the most of the algorithms for finite automata can be
modified to work on symbolic automata.

2.6 Symbolic transducers
A symbolic transducer A is a tuple A = (Σ,Ω,Q, I,F,
Π,δ), where Ω is an output alphabet and the transition
relation is δ ⊆ Q× (Π∪{ε})× (Π∪{ε})×Q.

A special case of a transition is identity. Iden-
tity takes an input a and copies it on the output. In
symboliclib, identity is denoted by @ in front of the
predicate (e.g. @in{a,b} : @in{a,b}).

As well as symbolic automata, every symbolic
transducer can be transformed into classic finite trans-

ducer. Therefore every operation applicable to finite
transducer can be applied on symbolic transducer after
the transformation, but the transformation can usually
be avoided by generalisation of algorithms.

3. Efficient algorithms for automata and
transducers

In many operations with finite automata, we need a
minimised version of the automata. However, a text-
book approach to minimisation of NFA includes de-
terminisation which may lead to the state explosion.
Therefore more efficient methods for NFA reduction
are used which avoid the full determinisation. In this
work we use algorithms based on simulations and an-
tichains. A reduction based on simulations usually
yields an automaton that is smaller than minimal DFA
but not deterministic.

The simulation relation �R⊆ Q×Q is defined as:

• �R ∩(F× (Q−F)) = /0
• for any p,q∈Q,a∈Σ,(p�R q⇒∀p′ ∈ δ (p,a),
∃q′ ∈ δ (q,a), p′ �R q′)

We can merge two states p and q when p �R q and
q�R p, which implies that they are language equiva-
lent.

The algorithm based on antichains starts searching
for a final state of the product automaton of the product
automaton of two automata A (the smaller one) and
B (the bigger one) while pruning out the states which
are not necessary to explore. We can stop the search
for a pair (p,P) (where p ∈ QA and P⊆ QBdet) if there
exists some already visited pair (r,R) such that p �
r∧R � P or if there is p′ ∈ P such that p � p′. The
main idea behind this is that if we have not found
a counterexample in a small set of automaton states,
there is no point of looking for a contradiction in a
superset of these states. Including more states in the
checked set cannot reduce the accepted language. The
superset of an already checked state therefore only
widens the accepted language and cannot contain a
new contradiction.

The second optimisation is based on simulations. It
comes from observation that L(A)(P)=L(A)(P\{p1})
if there is some p2 ∈ P, and p1 � p2. Since P and
P\{p1} have the same language, if a word is not ac-
cepted from P, it is not accepted from P\{p1} either.
Also, if all words from Σ∗ are accepted from P, they
are also accepted from P\{p1}. Therefore, it is safe
to replace the macrostate P with macrostate P\{p1}.
This algorithm also reduces the number of macrostates
that need to be checked and therefore the used memory
space and computing capacity.

Figure 2. Library Design

PREDICATE
PARSER PARSER

SYMBOLIC

SYMBOLIC
AUTOMATA

SYMBOLIC
TRANSDUCER

FINITE
AUTOMATA PREDICATE

4. Existing libraries

Currently, there are libraries that deal with some form
of symbolic automata. AutomataDotNet in C# by Mar-
gus Veanes [6], and symbolicautomata in Java by Loris
d’Antoni [7] are efficient and offer many advanced al-
gorithms. Unfortunately, they are very complex, have
a slow learning curve, and implementation of a new
algorithm requires dealing with a complex internal rep-
resentation of automata. Therefore are not suitable for
quick prototyping of new algorithms. Then there is the
VATA library[8, 9] in C++, which is a high efficient
open source library. VATA offers basic operations,
such as union and intersection, and also more complex
ones, such as reduction based on simulation or lan-
guage inclusion checking with antichains optimisation
[3]. It can also handle tree automata. It is modular
and therefore easily extendable, but since it is written
in C++, prototyping in VATA is not easy. Moreover,
VATA does not support symbolic automata. FAdo li-
brary [10] is a library for finite automata and regular
expressions written in Python. Unfortunately, it is still
immature and not well documented. Efficient library is
FSA written in Prolog [5]. FSA offers determinisation,
minimisation, epsilon removal and other algorithms
for symbolic automata, and also supports transducers.
Unfortunately, Prolog is not so widely used and the
library is outdated.

5. Design of the library
The library consists of multiple independent parts, as
is shown in Figure 2. The lines in the Figure signifies
that the connected modules interact with each other.

• Parser is used for automata and transducer
parsing.
• Predicate parser is called when Parser

finds a predicate. Predicate parser should parse
the predicate and transform it into an Predicate
object which respects the defined interface. The
object is then returned and Parser stores it in the
automaton object.
• Symbolic is a class for operations that are

the same for symbolic automata and symbolic
transducers. This includes the operations such
as intersection or union.
• Symbolic automata is a class for opera-

tions over symbolic automata. It contains an
attribute deterministic which indicates, whether
we are working with a deterministic automata or
a nondeterministic one. It includes basic opera-
tions such as determinisation and minimisation
as well as efficient and advanced ones, such as
simulations and antichains.
• Symbolic Transducer contains implemen-

tations of operations over symbolic transducers.
• Finite automata is a class containing al-

gorithms optimised for classical finite automata.
Classical finite automata operations do not need
to work with union or intersection of predicates,
only simple equality is required. Therefore some
of the algorithms implemented in Symbolic Au-
tomata may be modified to work more efficiently
when dealing with classic symbols instead of
predicates.

The library provides some predefined predicates
as default:

• in and not in predicates
• letter predicates, representing classic symbols

used in finite automata operations

All algorithms are independent from the type of
predicates used in automata. However, they require
certain operations over predicates. When adding a
new predicate type, all of these operations must be
implemented for the library to work correctly. The
needed operations are:

• conjunction
• disjunction

• negation
• satisfiability
• has letter - decide whether a symbol a ∈ Σ be-

longs to the set defined by the predicate

6. Implementation
Symboliclib is a library implemented in Python 3. The
default input format of symboliclib is Timbuk [11]
which is so far the only supported format. For sym-
bolic automata and transducers the Timbuk format was
slightly modified so that the main principles of Tim-
buk format are preserved. This allows simple automata
parsing which is very similar for finite automata and
the symbolic ones. Symboliclib also supports seriali-
sation of automata back to the Timbuk text format.

Symboliclib supports automata with epsilon rules
as well as automata with multiple initial states. Most
of the automata operations implemented in the library
(intersection, union, determinisation, minimisation, ep-
silon rules removing, etc.) are based on [4].

Attributes of the automata such as alphabets and
intial, final and all states are represented by a set. This
way it is ensured that the same state or symbol is not
saved redundantly two times.

For easy manipulation with automata, transitions
are saved in a list of dictionaries. The key of the
dictionary is a left-handend side state of a transition
and the value is another dictionary. In this dictionary,
the key is a predicate and the value is a list of right-
handed states.

For transitions p0
in{a,b}−−−−→ p1, p0

in{a,b}−−−−→ p2 and

p1
in{b}−−−→ p2 the structure would be:

[{’p0’: {in{a,b} : [p1,p2]}},{’p1’: {in{b} : [p2]}]

7. Conclusions
The goal of this work was to design and implement a
library aiming to fast prototyping of new algorithms.

The library was designed and implemented and it
includes mentioned state-of-the-art algorithms. These
algorithms were modified to work on symbolic au-
tomata instead of classic finite automata. Two different
types of predicates are supported by default.

Straightforward design of the library provides a
fast learning curve. Because of implementation in
high-level language Python implementation of new
algorithms may be accomplished in significantly lower
time that in the existing libraries.

8. Future work
An experimental evaluation of symboliclib could be
done for further optimisations. The evaluation should

include comparison with other libraries to determine
its efficiency. The main focus of evaluation should be
language inclusion checking which is often used in
formal verification.

Some experiments could be done to determine
whether simplifying algorithms for finite automata is
efficient. This could be accomplished comparing the
symbolic and finite automata algorithms which are
implemented separately in the library such as intersec-
tion, union or language inclusion checking based on
simulations.

Acknowledgements
I would like to thank my supervisor Ing. Martin Hruška
for his help.

References
[1] Gertjan van Noord and Dale Gerdemann. Finite

State Transducers with Predicates and Identities.
[Online]. [Visited 30.9.2016].

[2] Lucian Ilie, Gonzalo Navaro, and Sheng Yu. On
NFA Reductions. [Online]. [Visited 15.9.2016].

[3] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš
Holı́k, Richard Mayr, and Tomáš Vojnar. When
Simulation Meets Antichains: On Checking Lan-
guage Inclusion of Nondeterministic Finite (Tree)
Automata. Proc. of TACAS 2010, 6015:158–174,
2010.

[4] Javier Esparza. Automata Theory: An Algorith-
mic Approach, Lecture notes. [Online]. [Visited
19.2.2017].

[5] Web Pages to Prolog SFA library. [Online]. [Vis-
ited 11.12.2016].

[6] Margus Veanes. AutomataDotNet. [Online].
[Visited 2.12.2016].

[7] Loris D’Antoni. Github Repository of Symboli-
cautomata Library. [Online]. [Visited 2.12.2016].

[8] Web Pages to VATA library. [Online]. [Visited
11.12.2016].

[9] Jiřı́ Šimáček and Tomáš Vojnar. Harnessing For-
est Automata for Verification of Heap Manipula-
tiong Programs. Faculty of Information Technol-
ogy, Brno, 2012.

[10] Web Pages to FAdo library. [Online]. [Visited
10.12.2016].

[11] Web Pages to Timbuk. [Online]. [Visited
19.9.2016].

	Introduction
	Theoretical background
	Efficient algorithms for automata and transducers
	Existing libraries
	Design of the library
	Implementation
	Conclusions
	Future work
	References

