BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Table Library for Data-intensive Applications
Gabriel Brandersky*

Abstract

The default HTML table is rarely sufficient for data-intensive applications. Even feature-rich table
libraries may not be designed for such applications. Therefore, this paper discusses the design of
the table library with a different approach targeted for data-intensive applications.

The simplicity of HTML is the result of its declarative syntax. Since it is desired to make the usage
of the library as easy as possible, the final table is available as a custom HTML element. This
is where the Angular 2 framework comes into play; its components are not only usable through
extended HTML syntax, but also have the means of communication among themselves.

The philosophy of the library is to allow developers easily disable or replace the parts they do not
need. This is achieved by APIs with different levels of abstraction.

The library was successfully utilized in a customer-relationship management system. It is also
published as open-source on Github for Angular 2 framework.

Keywords: Web Technologies — Single-page application — Front-end frameworks — Angular —

Reusable components — Data table — Data-intensive applications

Supplementary Material: Source Code on Github — Demo App

*xbrand04@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

The motivation for this library emerged from the need
of a real-world application started in the beta version
of Angular 2. Existing libraries could not satisfy all
project requirements. It was concluded that it should
be supported by a library that is targeted for data-
intensive applications. There are not many libraries
that state this as their primary goal, but there are many
ways how to handle the problem (depicted in the fol-
lowing paragraph).

Let us assume some relational database technology
for storing data, which is a common practice in web
development. Then the database schema may contain
dozens of tables. Every table may have dozens of
fields and thousands of records. In this data volume,
all shapes of data could be found, figuratively speaking.
So data complexity is another concern. The data must
be presented in a way that is the most appropriate to the
user. The library aims to handle high data volume and
complex data by Ul elements that reduce data overload
on a user. Overall, the user gets more control over the
displayed data.

One of the outstanding current solutions is ag-
grid [1] where “ag” stands for agnostic. It is com-
patible with many different technologies, e.g. Angu-
lar, React, Web Components or pure JavaScript. The
project strives to be the world’s best JavaScript data
grid for Enterprise. The entire ag-Grid company is de-
voted to this goal. Several license types are offered by
the company. Nearly everything is included among the
features of ag-grid, e.g. sorting on columns, filtering
rows, selection of rows/cells, and grouping by values.

However, the ag-grid may be too heavy for smaller
business applications. A lighter alternative is ngx-
datatable [2], which is available for Angular 2 and
beyond. It creates virtual DOM to handle large data
sets. It also has intelligent resizing of columns and
vertical and horizontal scrolling.

The last library ngx-datatable is very close to what
we are aiming for in this paper, but with a different
approach and varying features. For example, we try
to avoid horizontal scrolling by allowing a user to
dynamically change currently displayed columns. An-
other important difference is the philosophy. While

http://excel.fit.vutbr.cz
https://zorec.github.io/ng2-pack/
mailto:xbrand04@stud.fit.vutbr.cz

ngx-datatable optimizes for the most common case,
we optimize for the edge cases. This can be seen in
the handling of cells which commonly need to have
customized look. So ngx-datatable offers a special
directive for that, but no other elements except table
cells can be augmented by that. On the other hand, we
make each section of the table replaceable regardless
whether it is a table header or cell. This makes the
common case more tedious but enhances the overall
flexibility.

The availability of different libraries is to the ad-
vantage of developers although the choice needs to be
carefully considered. Since Angular 2 was released
only recently (September 2016) and its ecosystem is
not so rich yet.

Chapter 2 presents the UI of the table library with-
out going into the details of the design process. We
use the UI for reference in chapter 3, which gives an
overview of the architecture. The iterations of the
design process with their evaluation are discussed in
chapter 4.

We will start this section by listing the most important
requirements. Then we present a sketch of the user
interface fulfilling these requirements.

e Sort columns, either in ascending or descending
direction.

e Change the order of columns.

e Display complex structured data inside one cell.

e Edit values in table cells, including complex
values.

e Edit multiple columns, a.k.a. mass-editing.

o Allow user to set which columns are visible.

e Filter on table data.

Figure 1 shows a user interface sketch of the table
library [3]. Firstly, visible columns are limited accord-
ing to user preferences. Users can customize them
dynamically in various ways. For enabling additional
columns, there is a plus sign (marked with number 1)
in the last header cell of the last empty column. Click-
ing on it would switch it to a select element (no. 2) with
a list of available columns grouped into categories.

Additionally, each column has a drop-down menu
(no. 3) with an option to add a column at the particular
position next to it. In the sketch, the column is being
added to the right from “Studies” column. For the
reverse effect, there is also an option for removing a
column. Two more options are for sorting columns in
the desired direction. Column “Personal ID” is sorted
from the lowest to the highest values. Since this is very

common action, the column name can be clicked to
sort or reverse the sorting direction.

Below each column name, a column-specific filter
(no. 4) is available. Only the rows matching the filter
conditions are shown. In our case, “Salutation” column
restricts values to “Mrs.” and “Doctor”. Each column
can have a different type of a filter. Besides selection
filter, column “Name” can fuzzy search on a custom
text.

Similarly, there are some specific dropdown op-
tions available only for columns with complex data
types such as “Subfields” in the “Studies” column
(no. 5). These options modify the display of column
cells or more precisely sub-cells. Each study cell con-
tains a list of studies for one person. One study is
an object with multiple properties. By checking off a
subfield, a corresponding property is displayed in the
sub-cell.

Finally, the last dropdown option is intended for
mass-editing of column values. The process is similar
to editing a single table cell. Hovering over a table
cell/sub-cell displays an editing icon that opens up
a popover (no. 6) with an appropriate edit form. It
contains either a single input field or as in the case of
“Studies” several input fields for each study property.
Mass-editing only requires an additional step, selecting
of rows that should be edited (no. 7). The number of
selected rows is shown in a drop-down option for mass-
editing.

The library adheres to the component-based architec-
ture that is built into the Angular framework. A com-
ponent is a basic building block in this architecture.
Each component carries a specific responsibility and
can be re-used by other components. An application is
created by combining these basic building blocks into
a component tree.

Diagram 2 shows the component tree for the table
module. The root component TableComponent
consists of two subcomponents, namely Theader-
Component and TbodyComponent. Each subcom-
ponent is composed of even smaller subcomponents.
The subcomponent TheaderComponent renders a
table header while utilizing AddColumnComponent
for adding new columns, and ThComponent to ren-
der a header cell. Similarly, TBodyComponent ren-
ders a table body while utilizing TdComponent to
render body cells. Complex cell types are implemented
in a separate component ArrayCellComponent or
ObjectCellComponent.

At this point, the responsibilities for handling dif-

Gzt B

Figure 1. The UI sketch of the table library based on the requirements

ferent parts of a table are divided among the compo-
nents. However, we did not define a public API that
is accessible to the user of a library. Let us start by
exposing only the root table component. It acts as a
black box, while the other components are its internal
details. The internal behavior of the table component
is adjusted only through its inputs. In other words, the
table component should provide an abstraction that
is powerful enough to fulfill the requirements of the
previous chapter for any variation of valid data. If we
consider the inputs for sorting, the developer should
be able to set a column that is sorted by default when
a page loads. Additionally, it should be possible to
disable the sorting on a specific column or disable sort-
ing completely. It also makes sense to configure initial
sorting direction when sorted by clicking on a label.
In a similar fashion, we consider various inputs for
other requirements (reordering, complex data, editing,
column toggling and filtering).

What if a developer wants to slightly adjust the
behavior of the table component, but there is no corre-
sponding input for that? For example, there should be a
column called “Actions” filled with buttons to execute
some action on a row. Since this feature is application-
specific, so it probably does not make sense to add
it to a library. If not, the developer must replace the

whole table, either by another library or by a custom
implementation. This should not happen. It is very
hard to create a good abstraction that anticipates all
possible use cases. So what can we do about that?
What if we create components with a different level
of abstraction? That means we must carefully design
inputs for all components from the table module and
make them publicly accessible. This gives developers
more flexibility for the price of learning additional ap-
plication programmatic interfaces (APIs). The upper
components have the highest abstraction level. To gain
more flexibility, a developer can access building blocks
of lower abstractions. He can then combine, comple-
ment or replace them as necessary. In that sense, the
high abstraction API is just a shortcut that combines
the lower-level components in a common way.

Apart from the subcomponents, the library offers
utilities that help to join the individual parts together.
Their presentation is outside the scope of this paper.

The user interface was created in several iterations.
Each iteration ends with usability tests in order to find
out what works and what does not [4]. In the testing
session, users are asked to speak their mind while
examining the interface. They also get a list of tasks to

TabLeMudqu

—————— TableComponent - - - - - - - -

1

1
TheadComponent |-
1

1

v

ThodyComponent
' v
(R - [rcemponent] - - {facamponent] -,

v
‘

|obje¢trn|| I |Array{‘nll{‘ *|

Figure 2. The partial diagram of the table library
shows the decomposed architecture.

finish, e.g. find the youngest person. For this task, it is
expected that the users discover the UI for sorting and
how it works by themselves. This process can reveal
even small usability problems. Finding problems has
no value if they are not addressed by proper changes.

In the first phase, we start with a prototype [3],
which lacks the underlying functionality (i.e. hard-
coded outputs). Nevertheless, it verifies some of the
basic assumptions made during the design without
much development effort. All 4 users did not have any
difficulty to accomplish their tasks.

In the second phase, the functionality is already in
place. This time, the testing results in further polishing.
Even small improvements can be of great value.

So far, we only mentioned the testing of UI, namely
user experience. As we are concerned with the design
of a library, we also need to care about good developer
experience while working with the library. We employ
the same testing methods, except that the users are
developers who have to work with the programmatic
interface in order to finish their tasks. Several impor-
tant findings were made. The installation is considered
overly complicated (because of dependencies). The
common source of mistake was not passing output
events upwards. This was probably expected because
input parameters are automatically passed downward.

To conclude the evaluation, we would like to present
the download statistics in Figure 3. The number of
downloads is steadily increasing despite the missing
propagation of the library (except for publishing it on
the development platform * Github'” and the registry
of JavaScript packages “ NPM>”).

In summary, we have created the table library starting
with the sketch of the UI based on the requirements.
Then we designed the architecture of the library. Fi-
nally, we evaluated both the UI and the architecture.
At the moment, the library has almost two thou-
sand downloads altogether, and the number is steadily

lgithub.com
https://www.npmjs.com/

600

450

o
December 2016 January 2017 February 2017 March 2017

Figure 3. Download statistics for the library

increasing.

In the future, we plan to add various table exten-
sions, e.g. (mass-editing) extension, exporting table
data as CSV or PDF.

I would like to thank my supervisor Professor Adam
Herout for the guidance, and constructive critiques.

My special thanks are extended to the members of
the UX design agency “interfacewerk GmbH”. They
not only provided a real-world application of the li-
brary but contributed numerous ideas. Their support
was truly indispensable.

[1] Javascript datagrid. https://www.ag—grid.
com/. Accessed: 2017-03-23.

https://github.com/
Accessed:

[2] ngx-datatable.
swimlane/ngx—-datatable.
2017-03-23.

[3] Lukas Mathis. Designed for Use. The Pragmatic
Programmers LLC., 2011. ISBN-13 978-1-93435-
675-3.

[4] Steve Krug. Don’t Make Me Think: A Common
Sense Approach to the Web (2Nd Edition). New
Riders Publishing, Thousand Oaks, CA, USA,
2005.

github.com
https://www.npmjs.com/
github.com
https://www.npmjs.com/
https://www.ag-grid.com/
https://www.ag-grid.com/
https://github.com/swimlane/ngx-datatable
https://github.com/swimlane/ngx-datatable

	Introduction
	UI Design Driven by Requirements
	The Layered Architecture
	The Evaluation by Users & Developers
	Conclusions
	References

