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Abstract
The focus of this paper is the comparison of languages and reduction of automata used in network
traffic monitoring. We propose several approaches for approximate (language non-preserving)
reduction of automata and comparison of their languages. The reductions are based on either
under-approximating the languages of automata by pruning their states, or over-approximating the
language by introducing new self-loops (and pruning redundant states later). Our approximate
reduction methods and the proposed probabilistic distance utilize information from a network
traffic. We provide formal guarantees with respect to a model of network traffic, represented using
a probabilistic automaton. We implemented the methods and evaluated them on automata used in
network traffic filtering.
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1. Introduction

The recent growth of cyber-crime, in particular intru-
sion into computer networks, has increased the demand
for systems for detection of malicious network traffic.
In such systems, regular expressions are often used to
describe traffic to be selected for a further inspection
(e.g., suspicious of containing an attack, tunnelled pro-
tocol, . . . ). The increasing speed of networks requires
hardware solutions to accelerate network traffic filter-
ing based on the regular expressions of interest. These
hardware solutions implement finite automata corre-
sponding to the regular expressions. The hardware
resources are, however, restricted, and so methods for
reducing the size of the automata must be used.

The reduction may be based on the classical ap-
proach of determinizing and minimizing the automata.
This, however, incurs the possibly exponential explo-
sion in the size of the determinized automata. Alter-
natively, one can use techniques for reducing directly
nondeterministic finite automata (NFA) using, e.g.,
various simulations [1, 2], and further techniques like
those proposed in [3] and implemented in the RABIT

and Reduce tool1. Still, even such reductions need not
be sufficient. For example, within our collaboration
with the group of accelerated network technologies
at FIT BUT (ANT@FIT), which is world-renowned
in the area of the hardware accelerated processing of
high-speed network traffic, we were given regular ex-
pressions that translate to NFAs having from units to
tens of thousands of states. Classical determinization
and minimization simply explodes on these automata.
Techniques of [3] may reduce the automata, though
the reduction may not be sufficient.

To improve on the above situation, we propose
a novel approach based on an approximate reduction of
the automata. Note that the approximate reduction may
change the language of the automata, which can, in
theory, lead to both false positives and false negatives
when classifying the network traffic. This may still
be, however, better than not being able to run any
classification at all or than having to completely ignore
some traffic patterns. Moreover, one can also aim

1http://languageinclusion.org/doku.php?
id=tools
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at the approximate reductions that will solely over-
approximate the language. This can then increase the
amount of packets from a hardware filtering device
to the subsequent final software classification, but no
critical traffic needs to be lost this way. In addition, we
hope that the reduction techniques that we proposed
can be fine-tuned such that a significant reduction of
the automata can be achieved without a significant
increase in the traffic sent for the final classification in
software. Our first experimental results confirm this
hypothesis.

Since we deal in this paper with the approximate
reductions, suitable methods for comparing similarity
of languages are necessary. This is needed so that we
can control the reduction in a systematic way. For this
reason, we propose using a distance that is expressed
as a probability that a randomly chosen string belongs
to the symmetric difference of the input languages.
A random string is chosen with respect to a probabilis-
tic distribution, which is represented by a probabilistic
automaton (PA). This PA is obtained by an analysis
of a representative sample of packets that occur in the
network flow. Hence, a learned PA gives us a compact
and abstract model of the network traffic, i.e., a rep-
resentation of the frequency of occurrence of various
packets in the network.

Subsequently, we propose several automata reduc-
tions that are specifically tailored for the use in net-
work traffic monitoring. The reductions are based
on either under-approximating the languages of au-
tomata by pruning their states, or over-approximating
the language by introducing new self-loops (and prun-
ing redundant states later). The reductions can be
parametrized by a maximal error, which is given with
respect to the desired distance between the language of
an input automaton and the language of the reduced au-
tomaton. In this paper, we give a high-level description
of the used distance and the proposed reductions.

The proposed techniques were implemented and
evaluated on a dataset provided by the ANT@FIT
group. We have obtained quite promising results show-
ing the potential of the proposed approach, which can
be further improved in many ways.

2. Preliminaries
In this section, we give some basic definitions and
we briefly describe existing methods for automata re-
duction and comparison of the similarity of their lan-
guages.

Definition 1. A (nondeterministic) finite automaton
(NFA) over an alphabet Σ is a tuple A=(Q,Σ,δ ,q0,F)
where

– Q is a finite non-empty set of states,
– δ : Q×Σ→ 2Q is a transition function,
– q0 ∈ Q is an initial state, and
– F ⊆ Q is a set of accepting (final) states.

A finite automaton A = (Q,Σ,δ ,q0,F) is called deter-
ministic (DFA) if ∀q ∈ Q and ∀a ∈ Σ : |δ (q,a)| ≤ 1.

Definition 2. An NFA is called unambiguous (UFA)
if it has at most one accepting computation on every
input string.

Finally, we give an informal definition of a proba-
bilistic automaton. A probabilistic automaton (PA) is
an NFA where transitions are associated with probabil-
ities and final states are associated with a probability of
accepting in this state. For each state, the sum of prob-
abilities of all outgoing transitions and the probability
of accepting in this state is equal to one.

2.1 Automata Reductions
If we consider DFAs, there exists an efficient algo-
rithm for their minimization. Unfortunately, a use
of this algorithm for general NFAs requires a prior
determinization of the input automaton, which may
cause an exponential increase in the number of states
(compared to the input NFA). Moreover, the size after
minimization can still be exponentially larger than the
size of the input NFA.

An alternative approach is to reduce NFAs directly
without determinization. The general NFA state mini-
mization is a PSPACE-hard problem [4], but there still
exist some practically feasible algorithms to reduce
NFAs. One of those algorithms is based on merging
states according to the (maximal) simulation equiv-
alence relation on the states. The definition of the
simulation equivalence is based on the notion of the
forward or backward simulation relation [5].

It can be shown that for each NFA there exists
a unique largest simulation, called the simulation pre-
order. The simulation equivalence for the simulation
preorder 4 is then given as 4 ∩4−1. Moreover, there
exists a polynomial-time algorithm for computing the
largest simulation equivalence [6].

For the given simulation equivalence, the state
merging algorithm merges all states in the same equiv-
alence class. A generalization of the above mentioned
reduction is a reduction based on preorders [1].

The basic simulation reduction uses the only sim-
ulation equivalence (forward or backward) for a re-
duction. Another approach is to use a composition of
the forward and the backward equivalences [2]. An
automaton is then reduced according to the combined
equivalence obtained from the backward and the for-
ward simulation preorders.



The above mentioned methods use only merging
of states for reduction. This is not, however, the only
possible approach. The state merging methods can
be combined with, e.g., a removing of transitions [3]
(tools RABIT and Reduce).

So far, we dealt with language-preserving reduc-
tions only, where for an NFA A and a reduced NFA A′

it holds that L(A) = L(A′). There also exists a way of
reducing automata, called hyperminimization, which
modifies the language of the input automaton. A hy-
perminimizing algorithm converts an input automaton
A into a smaller automaton A′ such that the symmetric
difference between languages L(A) and L(A′) is a fi-
nite set [7]. Hyperminimization, however, is not suit-
able for our purposes because reduction up to a finite
difference need not yield a sufficiently small automa-
ton. Moreover, by this reduction, we might remove
important strings from the input language.

2.2 Automata Language Comparison
Now, we discuss methods for measuring the difference
of languages of finite automata. One of the ways is
based on comparing the similarity of strings from the
languages as follows. The similarity of two strings
can be expressed as a cost of operations transform-
ing a string of a source language to some string of
the target language (a symbol insertion, deletion, or
substitution by a different symbol). Then the minimal
cost of a sequence of these operations transforming
a string x into a string y is called the edit-distance of
strings x and y (denoted as d(x,y)) [8]. The notion
of edit-distance between strings can be generalized to
languages by

d(L1,L2) = inf{d(x,y) | x ∈ L1,y ∈ L2}. (1)

The reason why this definition is not suitable for many
applications, including ours, is the fact that if lan-
guages L1 and L2 have at least one common string,
then their edit-distance is zero.

Another approach to comparing regular languages
is using the Jaccard distance and the Cesaro-Jaccard
distance [9]. The actual computation is, however, quite
complicated because of a need to determine the matrix
polynomials of the automaton adjacency matrix when
computing the Cesaro-Jaccard distance. Moreover,
for our purposes, it seems more practical to somehow
reflect in the distance the fact that not all strings are of
the same importance for us, e.g., some of them appear
rarely or do not appear at all. Hence, an approximate
reduction that makes a mistake by classifying such
strings should be better than on that makes a mistake
on more important strings.

3. Probabilistic Language Distance
For a comparison of the languages of automata used
in network traffic monitoring we propose the follow-
ing distance (we call it the probabilistic language dis-
tance). This distance expresses the probability that
languages L1 and L2 over the same alphabet Σ dif-
fer on a word chosen randomly from Σ∗ according to
a given distribution on words.

Definition 3. Let µ be a distribution over Σ∗ and its
pointwise extension to a set of strings L is defined
as µ(L) = ∑w∈L µ(w). Further, let L1 and L2 be lan-
guages over Σ. Then the probabilistic language dis-
tance dµ : 2Σ∗×2Σ∗ → R≥0 is defined as

dµ(L1,L2) = µ(L14L2), (2)

where A4B denotes the symmetric difference of the
sets A and B, defined as A4B = (A\B)∪ (B\A).

We propose an algorithm for a computing proba-
bilistic distance for regular languages. Moreover, if the
languages are given as UFAs, our proposed algorithm
can compute the distance in a polynomial time. In
this case, no prior determinization is necessary. If the
languages are given by general NFAs, one can use two
possible approaches. The first uses on-the-fly deter-
minization and product construction, and the second
uses disambiguation [10]. Both mentioned approaches
can be more efficient compared to an a priori NFA de-
terminization (but in the worst case, both approaches
can run in exponential time).

The probabilistic distance can be used in our net-
work monitoring application for comparing automata
representing attacks or communication protocols. In
this setting we can use a PA to model a network traffic
(more concretely occurrences of packets in the net-
work traffic). Then the probabilistic distance expresses
the difference of two NFAs with regard to the traffic
model. This is crucial if we are performing opera-
tions with NFAs (e.g., their reduction), and we want to
give a formal guarantees on the error of the modified
automaton.

4. Approximate Reduction of Automata
In this section, we introduce two approaches for the
automata reduction. The first one is based on removing
branches of an input automaton (we call it the pruning
reduction). The second one is then based on adding
self-loops into the automaton (we call it the self-loop
reduction). As in the case of the probabilistic distance
described in the previous section, for reductions we
also use a probabilistic automaton for representing the



input traffic. Based on an input probabilistic automa-
ton, the pruning reduction selects branches to be re-
moved, and the self-loop reduction selects states where
a self-loop over every symbol is to be added. The re-
duction methods are proposed directly for reducing
NFAs, however, if an input automaton is unambiguous,
more efficient methods for computation can be used.
The workflow of automata reductions and obtaining
probabilistic automaton in network traffic monitoring
is shown in Figure 1.
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Figure 1. The workflow of the network automata
reductions. In the first step, P is synthesized from the
input traffic. In the second step, P and an NFA
describing attacks or protocols are the input for the
reduction. The reduction yields a reduced automaton
satisfying the restriction conditions.

4.1 Pruning Reduction
We start with the pruning reduction. As we have al-
ready mentioned, the pruning reduction selects branches
of the input NFA that are later removed. The choice
of branches depends on the input probabilistic automa-
ton. Because this reduction approach is language non-
preserving, it is necessary to restrict the reduction by
a parameter. Because it removes states, it performs lan-
guage under-approximation. According to the meaning
of this parameter, we divide the pruning reduction to
the ε-pruning reduction, and the k-pruning reduction.
In the case of the ε-pruning reduction, the parameter
sets a maximum error of the reduction. The error de-
notes the maximum probabilistic distance of the input

NFA and the reduced NFA. In the case of the k-pruning
reduction, the parameter restricts the ratio between the
number of states of the reduced NFA and the number
of states of the original NFA.

The proposed algorithm, in the first step, labels
each final state q f with a probability of the occurrence
of some string from the backward language of q f , i.e.
µ(L−1(q f )) (probability of the backward language).
An input automaton is reduced according to a subset
of final states F ′ as follows. The reduced automaton
is obtained from the input automaton by removing
branches leading to F ′. Hence, the algorithm selects
(according to the computed labels) a subset of the
final states such that the reduced automaton meets the
restriction criterion. Finally, the reduced automaton
is obtained from the best found subset. However, for
the optimal selection of the removed final states, we
have to go through all subsets of final states, which can
be infeasible for bigger automata. Therefore, we can
relax the optimality and perform the pruning reduction
on the level of subautomata.

Subautomata Pruning A common automata used
in network traffic monitoring consist of several subau-
tomata. We can thus divide the whole automaton into
several independent subautomata A1, . . . ,An, such that
their sets of final states F1, . . . ,Fn form a decomposi-
tion of F . Hence, we can perform the relaxed pruning
reduction by removing whole subautomata, i.e. we do
not select final states for the reduction but we select
the whole subautomata. For the optimal selection of
subautomata, 0-1 integer linear programming, which
is a special form of the integer linear programming
where each variable can only take on the value of 0 or
1, can be used.

4.2 Self-loop Reduction
In this section, we present our second approach for
reducing finite automata. As in the case of the pruning
reduction, the self-loop reduction is a language non-
preserving reduction. The self-loop reduction consists
of adding self-loops to certain states (and making these
states final), followed by removing all other transitions
from these states and trimming the modified automa-
ton. Hence, it performs a language over-approximation.
The choice of states for adding self-loops depends
again on the input probabilistic automaton. The re-
duction is restricted by the parameter (k or ε) with the
same meaning as in the case of the pruning reduction.

In the first step, the proposed algorithm computes
for each state of the input automaton the weight of its
backward language (the weight of a word w is a proba-
bility of w ignoring the probability of accepting). Then,



the algorithm selects states where the self-loop is to
be added (according to the computed labels), such that
the restriction criterion is met. Because the choice
of the optimal set would lead to an exponential-time
algorithm, we use a greedy approach, which may not
find the optimal solution. On the other side, a choice
can be made in a polynomial time.

5. Experiments

The proposed techniques for automata distance compu-
tation and their reduction were implemented in a proto-
type tool. This section provides results of experiments
performed with the implemented tool.

For these experiments we use the probabilistic au-
tomaton P2k learned from 2000 packets (algorithm
Alergia [11, Chapter 16]). For learning of the proba-
bilistic automaton we use the TREBA tool2. We per-
formed the reduction of some selected automata ob-
tained from regular expressions. Then, we computed
the probabilistic distance of the input and the reduced
automata. We also determined the error related to our
captured traffic (a multiset of packets). This error is
then computed as a quotient of the number of misclas-
sified packets and the number of all packets.

When the automata are synthesized into hardware,
the input string is accepted if a final state is reached
during the computational steps (the input string may
not be completely processed). Therefore, if we com-
pute the error, we also use this “prefix acceptance” (if
a string w is accepted in this way by some NFA A, we
denote it as w ∈pr L(A)). The packet p is thus mis-
classified iff p ∈pr L(A)⊕ p ∈pr L(Ar) where A is an
original NFA, Ar is the reduced NFA, and ⊕ is logical
nonequivalence.

Let us now present more detailed information about
reductions of each input automaton (the automata are
transformed from REs, which are obtained from the
ANT@FIT group)

http-bots The first input automaton is http-bots.
This automaton has only 8 states. We performed the
k-pruning, and the k-self-loop reduction for various
values of k. The parameter k denotes the maximum ra-
tio of the number of states of the reduced NFA and the
number of states of the original NFA. The results of the
reduction are shown in Table 1. The error related to the
captured traffic (the column “Traffic error”) is obtained
from the multiset of 106 packets. The error evaluation
took about 10 min for each pair of the reduced and the
original automaton.

2https://code.google.com/archive/p/treba

From the table, we can see that in the case of the
self-loop reduction, the computed probabilistic dis-
tance is greater than the traffic error, and the difference
between the probabilistic distance and the traffic er-
ror is quite small. Moreover, observe that we could
remove from the original NFA more than half of the
states with the traffic error being is less than 1%.

In the case of the k-pruning reduction, the dif-
ference between the traffic error and the computed
probabilistic distance is bigger. The difference may be
caused mainly by an inaccuracy of the learned PA.

This experiment shows that the self-loop reduction
is probably more suitable for our application. The au-
tomaton obtained via the self-loop reduction decides
on the acceptance of an input string after reading some
prefix. In our network monitoring application, it can
be a quite common phenomenon (we are able to clas-
sify some packets after certain prefix of its payload).
Therefore, in the further experiments we focus mainly
on the self-loop reduction.

Table 1. The reduction of the automaton
http-bots with 8 states.

(a) The self-loop reduction

k States Traffic error Probabilistic distance
0.0 1 0.992 0.999
0.2 3 0.00169 0.00786
0.5 4 0.00089 0.00372
0.6 5 6.0×10−6 6.86977×10−5

0.7 6 0.0 1.34992×10−5

1.0 8 0.0 0.0

(b) The pruning reduction

k States Traffic error Probabilistic distance

0.0 1 0.00718 2.00372×10−8

0.5 4 8.41×10−4 2.73357×10−13

0.6 5 0.00634 2.00369×10−8

0.7 6 0.0 0.0
1.0 8 0.0 0.0

info.rules The second automaton for the reduction
is info.rules with 16 states. We performed the k-
self-loop reduction for various values of k. The results
of the reduction are shown in Table 2. The error related
to the captured traffic is obtained from the multiset of
106 packets, and the evaluation took about 9 hours for
each pair of the reduced and the original automaton.

The computed probabilistic distance is again greater
than the traffic error. From the table, we can see that for
the k-self-loop reduction with the parameter k = 0.2
we obtained an automaton, having only 25% of states

https://code.google.com/archive/p/treba


of the original automaton, with the traffic error less
than 1%.

Table 2. The self-loop reduction of the automaton
info.rules with 16 states.

k States Traffic error Probabilistic distance
0.0 1 1.0 1.0
0.2 4 0.00861 0.03041
0.5 9 0.0 4.04245×10−10

0.7 12 0.0 1.93657×10−12

1.0 16 0.0 0.0

shellcode.rules The last considered automaton is
shellcode.rules with 95 states. We again per-
formed the k-self-loop reduction for various values of
k. The results are shown in Table 3. The error related
to the captured traffic is obtained from the multiset
of 5×105 packets, and the evaluation took about 12
hours for each pair of the reduced and the original
automaton.

For each reduced automaton we give only an upper-
bound of the probabilistic distance. This is because the
reduced automaton is no longer an unambiguous au-
tomaton. For the computation of the exact distance, we
therefore need a prior disambiguation of the reduced
automaton, which would yield a huge automaton.

The computed probabilistic distance is not greater
than the traffic error for automata reduced with the
parameters k = 0.3 and k = 0.5. This is caused by the
inaccuracy of the learned PA.

Table 3. The self-loop reduction of the automaton
shellcode.rules with 95 states.

k States Traffic error Probabilistic distance
0.0 1 1.0 ≤1.0
0.3 29 1.6×10−5 ≤1.27877×10−12

0.5 48 1.4×10−5 ≤6.41914×10−19

0.7 67 0.0 ≤5.29250×10−25

1.0 95 0.0 0.0

6. Conclusion
In this paper, we gave a high-level description of pro-
posed methods for comparing languages and automata
reductions used in network traffic monitoring. The
proposed methods are based on the knowledge of an
input traffic represented by a probabilistic automaton.
According to a PA, we select automata branches for
removing, and states where self-loops are added.

The proposed methods are implemented and evalu-
ated on a set of small automata used in network traffic
monitoring. The experiments on these automata show

that we are able to reduce input automata to less than
25% of their size with the traffic error less than 1%.
Currently, the most time-demanding operation of these
experiments is the traffic error evaluation. This prob-
lem could be solved by a hardware accelerated evalua-
tion.

The performed experiments also indicate that a suc-
cess of the reduction depends a lot on the used prob-
abilistic automaton. Therefore, in the further contin-
uation of the work we closely focus on the learning
process. The very first ideas, for instance, preprocess-
ing of the captured traffic before learning, may lead to
a more precise probabilistic automata.
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