
http://excel.fit.vutbr.cz

Rule-Based Password Generation
Karel Jiránek*

Abstract
This paper describes the password generation based on rules. Generator described in this paper
uses knowledge from training phase with a password set to reduce time to find a correct password.
The paper addresses the design of the password generator for Fitcrack tool. Fitcrack is a password
recovery solution which can recover passwords from encrypted files. The main aim of this work is
to extend Fitcrack tool with another password generator. When the password being cracked the
generator produce password, which is hashed and compared with hash from the encrypted file.

Keywords: Password generation, probability grammar, Fitcrack, cryptography, OpenCL

Supplementary Material: N/A

*xjiran00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The security in information technologies is an aplenty
discussed topic. The goal of the efforts is to keep our
data safe. One way to achieve that is to use strong
passwords for our accounts and data. On the other
side, complicated passwords and modern cryptogra-
phy methods mean inconvenience for security law-
enforcement agencies during the investigation process.
To restore a lost password, we can use several different
approaches.

The main problem of the currently used solution
and password generators is time required to find – to
generate the correct password. It is caused by the
absence of any rules during the creation process. For
instance, brute force generator generates passwords
in alphabetical order changing a letter or set of letters
with next from alphabet. From mentioned above the
prime aspect of the measurement and evaluation of
the result is time needed to find the correct password.
We can also compare password per second ratio. It
is obvious that simple methods without any rules or
ordering will perform better.

There are many solutions allowing users to restore
forgotten password. One of them is Fitcrack tool devel-
oped at Faculty of Information Technology. Beyond
Fitcrack there are other tools for recovering passwords.
For example Hashcat – open source tool with big sup-
port all around the world.

Our solution gives the goal to reduce time to find
the correct password. Also, we want to extend Fitcrack
tool with another password generator. To achieve our
goal probabilistic grammar will be used to reduce the
time and searched pool of passwords.

2. Related work
Beside probabilistic approach, there are many other
methods to recover lost password. Easiest and straight
forward way is brute force attack. This method is very
easy to implement and performs well in password per
second ratio. However as the complexity of character
set and length of password grows so as the number of
passwords. With secure password generated from the
character set containing digit and special characters
brute force method becomes ineffective – the time

http://excel.fit.vutbr.cz
mailto:xjiran00@stud.fit.vutbr.cz


needed to crack a single password can easily exceed
dozen of years [1].

Key patterns bring completely different view at
password recovery. Generation of a password is based
on the easily memorable key push sequence rather than
on probability of characters. A key pattern is an order
of pushed buttons at keyboard situated into a shape.
People use geometrical shapes to remember the pass-
word. Among most favorite one belong vertical or
horizontal line such as qwerty and asdfg. Key pattern
method requires sophisticated training rules to gen-
erate key pattern rules. Also, the additional training
set is needed. Results of experiments carried out at
Florida State University shows the key pattern method
does not bring significant improvement to the pass-
word cracking process [2].

As another method we can use Markov string to re-
duce the time to find the correct password. The Markov
chain (string) describes a stochastic process where the
probability of next state (next generated letter in the
password) depends only on the current state. Never-
theless Markov chain method is more self-sufficient
then key pattern method or rule-based password gener-
ation – no training password set is needed – method is
satisfied with plain language dictionary [3, 4].

The design of our generator is based on rule-based
password generation described in Password Cracking
Using Probabilistic Context-Free Grammars [5]. The
method fragments password in training set by type and
then in time of generation reassemble the password
but in the probabilistic order. More about grammar
in the subsection 3.1. This work varies in the way of
storing fragments of the password and in the way of
generating the password.

The main difference is that the probability of the
fragment is computed during the training phase but
when the fragments are sorted the value is omitted
(not saved to the file). In the related work mentioned
above fragments are stored with this value. The biggest
advantage of our design is that the generator does not
have to recompute the total probability of a currently
generated password because fragments are sorted in
the time of training.

Not storing the probability value of fragment can
cause wrong generation order of passwords. In other
words, password with lower probability might be gen-
erated before password with the higher one. The gen-
erator has no chance to compute the total probability
of password without explicitly assigned probability to
each fragment. The minor disorder is overwhelmed
with massive generation parallelism on GPU.

3. Design of generator

3.1 Used grammar
During the generator process, we will use the proba-
bilistic context-free grammars.

Grammar is ordered quaternion in order G = (N, T,
P, S), where N is a finite set of non-terminal symbols,
T is a finite set of terminal symbols, P is a finite set of
rewrite rules and finally S start symbol from N [6].

In our case, N includes substitute characters for all
characters in the password. Set of terminal symbols
T contains passwords issued to check for correctness.
The rewrite rules P define how to replace a symbol in
the password with the substitute character. The initial
symbol depends on the first character in the password.
Grammar is called probabilistic when each rewrite
rule has assigned a certain probability [7]. In our case,
it means we have to assemble a set of rewrite rules
according to their total number of appearance in the
training set. From now further we will call the rewrite
rules pre-terminal strings.

The grammar of our generator is based on Matthew
Weir’s work [5]. First of all, we must define the set of
non-terminals. All alphabet characters in the password
(lower case and upper case) will be substituted with
L, digits with D and special characters with S. Table 1
sums up our grammar.

Type Pre-term. symbol Symbols
Letter L abcdefghijklmnopqrstuvwxyz
Digit D 1234567890

Special character S @$%&(){}+-.

Table 1. Table shows type of symbol, char to
substitute symbol (pre-terminal character) with and
symbol to substitute.

Any uninterrupted sequences of the symbols of
the same type are shortened to one substitute letter.
The length (number) of the shortened sequence is ap-
pended to the proper substitute letter. For instance,
the password myAngles is rewritten to LLLLLLLL and
shortened to L8 – eight letter template (pre-terminal
string).

3.2 Training phase
In the training phase, the generator (more precisely the
training script) trains on a set of training passwords.
The pre-terminal strings are generated in this phase.
In one iteration the exactly one password is rewritten
to the pre-terminal string. Basically the rewriting is
the replacing every character from a password with the
substitute symbol – the table 1 presents the substitute
symbols (pre-terminal symbols) and types of character
to be replaced with substitute symbol. Beside pre-
terminal string, it is necessary to store the fragments



Figure 1. Percentage representation of particular pre-terminal string in sets phpBB, Myspace and RockYou.

from the password. The fragment is a continuous se-
quence containing the pre-terminal symbols of the
same type. For example, the password p@sswod11 is
segmented into four fragments: p, @, ssword and 11.
Each fragment is saved and moved higher in the frag-
ment file (fragment probability is increased) – the frag-
ment on the top of the file has highest probability.

For training purposes, leaked password sets acces-
sible on the Internet1 were used. Our training script
was tested on Myspace set (≈ 37 K passwords), ph-
pBB set (≈ 185 K passwords) and on RockYou set (≈
15 M passwords).

In the figure 1 we can see the percentage represen-
tation of the particular pre-terminal string across the
sets. For clarity, only the structures which gained 2%
probability are present in the graph.

3.3 Generator core
The first step of the generation is taking the first tem-
plate (pre-terminal string) from the prepared dictionary.
The dictionary with templates was created in the train-
ing phase as a result of rewriting passwords. Next step
is to insert fragments of proper type and length into
the template.

For the generation process, it is essential to de-
fine auxiliary index (pivot). The pivot points to the
pre-terminal part which is currently changed with a

1https://wiki.skullsecurity.org/index.php?title=Passwords.

fragment from the dictionary. Other template sections
are static at that moment. Initial point for pivot for
each template is first part e.g. in the pre-terminal string
L5S2D1, the first part is L5. The pivot is moved to the
next part in two cases. First, if fragment dictionary is
exhausted – there are no other fragment in left or if
there is still at least one part which has not been re-
placed yet. The detailed move of pivot and generation
of the password can be seen in the algorithm 1.

Algorithm 1 Password generation algorithm
1: for each pre-term from preTerm.dic do
2: pivot← 1
3: while pivot != 0 do
4: for each fragment indexed by pivot do
5: pre-term[pivot]← fragment
6: if all pre-terms replaced then
7: send password to crackers
8: else
9: pivot← pivot + 1

10: end if
11: end for
12: pivot← pivot − 1
13: pre-term[pivot]← pre-term part
14: end while
15: end for



4. Implementation

Both Fitcrack and the probabilistic generator is imple-
mented in C/C++ programming language. OpenCL
ISO C language was used to implement kernels for
GPU. The script which generates mandatory dictionar-
ies for cracking is written as a script in Python.

4.1 Parsing script
The script which is used in training phase was written
in Python 3 and takes single argument. The argument
must be file name or path to the file with a training set
of passwords. Script presupposes that passwords are
separated with at least one symbol of newline.

After creation and verification of file, the script
reads input line by line in main loop. Each line is read
symbol by symbol. When a symbol of a different type
is encountered, length (number of symbols read so far)
is appended to substitute symbol. This pair – substitute
letter + length is added to previously substituted part of
template. E.g. from password password11! we get pre-
terminal string L8D2S1 – eight letters followed with
two digits and one special character. The fragment
from substituted part of the string is stored separately.
When the same fragment is encountered, its probability
is increased.

When the all password from file are parsed, the
created dictionaries (sets of pre-terminal string and
fragments) are sorted by fragment/template probability.
The number of occurrences (probability) is not needed
after sorting thus after sorting is finished this number
is omitted. Finally, these dictionaries are saved to the
files.

4.2 Generator
The CPU generator is available in the stand-alone ver-
sion for generating password dictionaries but also as
the integrated feature of Fitcrack. The core and logic
of these generators is same. Both versions are im-
plemented in C/C++ to reach desired performance.
Before generation, it is necessary to load dictionaries
into RAM. Schema of the generation is shown in the
picture 2. A template is exhausted when all possi-
ble combinations of fragments were inserted into the
template.

5. Experiments

5.1 Dictionaries
In this section, experiment with the stand-alone ver-
sions of the password generator are described. We
decided not to experiment with integrated generator in
Fitcrack because the most time consuming part of the

Figure 2. Core logic of CPU generator. Movement of
pivot is omitted for simplicity.

Dictionaries Number of passwords Set type
Myspace 37 000 Leaked
phpBB 185 000 Leaked

RockYou 15 000 000 Leaked
Pwgen 60 000 Generated

Memorable 60 000 Generated

Table 2. Table showing base password set, number of
password in set and how set was obtained.

cracking is consumed by verification of the password.
It is hard to measure the performance of the generator
and performance of cracker separately.

For experimental purposes, passwords sets dis-
played in the table 2 were used. First three can be
obtained can be obtained from skullsecurity.org2. Also
two artificial sets were generated for experimental pur-
poses. Passwords in the artificial sets are between 3
and 11 letters long. Pwgen set was created with pwgen,
GPL’ed password generator viable through Ubuntu
packages. Passwords in this set are pseudo-random.
Last used set Memorable was created with password
generator accessible on github.com3. Passwords in this
set should be easily remembered by humans, so we
called it memorable.

2https://wiki.skullsecurity.org/index.php?title=Passwords
3https://github.com/bermi/password-generator



We also have to define dictionaries used as input
of cracking. In the experiments described further, we
will use pre-generated subsets of actual dictionaries
because it is not possible to store whole dictionaries.
Dictionaries used in experiments were generated from
outputs (also dictionaries) created in training phase.
For experimental purposes maximal length of gener-
ated dictionary was set to 15 million passwords.

5.2 Experiment 1
In this experiment, 1000 random passwords are chosen
from leaked password sets (sets memorable and pw-
gen are artificially generated). Then these passwords
are used an input of the experiment. During the ex-
periment, we want to gain the information whether
passwords chosen from leaked sets are present in the
generated dictionary. Values displayed in result table
are calculated as the total number of the passwords
(1000) divided by the number of the number of pass-
words hit – the number of found passwords. In other
words, result value represents how many randomly
chosen passwords from leaked dictionary (in percents)
was found in generated dictionary.

The result of the experiment can be seen in the
table 3. In our experiment, pseudo dictionary named
Brute force was involved. We consider this set as
a dictionary, but we also presumed that brute force
would find password sooner or later so we can say that
100 % random passwords will be found. We can notice
that some number are followed by the letter hits, which
represents the number of hits if percentage value of
hits is lower than one.

5.3 Experiment 2
The second experiment is very similar to the first one.
However in this experiment, time to crack a password
is measured. The passwords are taken one by one from
the generated dictionary (15 000 000 passwords). Tak-
ing a password from a generated dictionary simulates
generating process. The advantage of this approach is
that with pre-generated dictionaries we do not have to
wait until a password is generated. For each password
from the generated dictionary, experimental tool check
if the password is present in 1000 randomly selected
passwords (1000myspace, 1000phpBB, 1000RockYou
etc.). For each match, we noted down the position of
the password in the generated dictionary, i.e. its se-
quence number. After processing the entire 15-milion
dictionary, we calculated the average number of itera-
tions required to find a password (the average password
sequence number). The lower the better. For comput-
ing the cracking time, we needed a reference password
per second ratio. We chose speed 22,938,300,000 pass-

word per second, which is an average cracking speed
while attacking PDF 1.7 (Adobe Acrobat 9)4. The av-
erage time to crack the password was calculated as a
multiplication between the average iteration number
to get the correct password (the number of passwords
generated before the correct one) and time to crack
(verify + generate) one password (1/speed per second).

The situation is complicated with pseudo brute
force dictionary. The number of the iteration must be
estimated in a different manner, because brute-force
generator is very noneffective. It would be unbear-
ably time consuming to wait until the password is
found. For the estimation we used special estimation
program, algorithm is not discussed in this paper. It
is also necessary to mention that every password was
trimmed before submitting to the estimation script –
all uppercase were changed to lower case and all spe-
cial characters were released from the password. The
trimming was carried out to satisfy brute-force charac-
ter base (abcdefghijklmnopqrstuvwxyz0123456789) –
the characters which are not included in the base, but
present in submitted password, would cause an error
during estimation.

The results are presented in the figure 4. The ex-
cellent result are marked with green (time <= day)
and bad with red color (time > day). Some cells are
hatched because the number of the found passwords
during the experiment was lower than 1 % (10 pass-
words).

5.4 Experiment 3
In the experiment number 3 grammar base attack (rule
base attack) and dictionary attack are compared. For
this experiment we chose 200 random password from
the faithwriters leaked password set. The full faithwrit-
ers set can be obtained also from the skullsecurity.org.
The experiment has two part. In the first part, we tried
to crack 200 password with the leaked password sets
– Myspace and phpBB. In other words we try to find
a password from the 200 selected passwords in the
leaked dictionary. In the second part we repeated the
procedure but instead of leaked password sets, the dic-
tionaries containing 4 billions passwords generated by
our generator were used. The result can be seen in
figure 5.

5.5 Conclusion of experiments
From the tables 3 and 4 we can say dictionaries cre-
ated from leaked sets (real passwords) perform very
well against the same type of sets (passwords created

4Cracking on pc configuration:
https://sagitta.pw/hardware/gpu-compute-nodes/brutalis/



Figure 3. Output from experiment focused on the percentage of hit 1000 random passwords in generated
dictionary. The excellent result are marked with green, average with blue and bad with red color.

Figure 4. Output from experiment focused on time (iteration sequence number) reduction. The excellent result
are marked with green (time <= day) and bad with red color (time > day). Some cells are hatched because the
number of the found passwords during the experiment was lower than 1 % (10 passwords).

Figure 5. Dictionary and grammar attack comparison.

by humans vs. passwords created by humans, artifi-
cially created with one method vs. artificially created
with the same method). We can see that dictionaries
based on human passwords are almost useless against
machine generated passwords. The excellent result
are marked with green and bad with red color. From
figure 5 we can say that our generator managed to
find approximately 18-35 % more passwords than the
dictionary attack.

6. Conclusion
In this paper, we discussed aspects of rule-based pass-
word generation. Other approaches such as key pat-
terns and Markov chain are mentioned in 2. In the
section 5 we experimented with various sets and dic-
tionaries.

Training script and the password generator gives

the solid performance (hit ratio) in the generation pro-
cess. The performance of the password generator
based on the rules rise and falls on the used dictio-
nary. Several performance outputs from the experi-
ments are showed in the section 5. Most of all our
rule-based generator incredibly reduce time – the num-
ber of iteration needed – to find proper password when
compared with brute force attack. The average saving
is approximately 3.0∗1024 iterations (reduction from
a few thousand years to a seconds) compared with
brute-force attack. It is necessary to say that the hit
ratio of our generator – number of found passwords –
was lower than brute-force’s.

We would like to point out that the generator and
training script are only means for cracking – a addi-
tional training set/s must be used. Generator is useless
without any previously used training set/s.

The amount of generated passwords is currently
not limited and depends purely on the grammar used.
For more computationally-complex cracking, the num-
ber of generated passwords may be too high to be
processed in a meaningful time. Thus, in the future
work, we want to let the user define a limit called the
threshold. The threshold defines the minimum proba-
bility of a rewrite rule to be used. Rewrite rules with
probability lower than the threshold are ignored which
reduces the number of generated passwords.



Acknowledgements
I would like to thank my supervisor Ing. Radek Hran-
ický for help, willingness and advice during work at
this paper.

References
[1] Radek Hranický, Petr Matoušek, Ondřej Ryšavý,

and Vladimı́r Veselý. Experimental evaluation
of password recovery in encrypted documents.
In Proceedings of ICISSP 2016, pages 299–306.
SciTePress - Science and Technology Publications,
2016.

[2] S. Houshmand, S. Aggarwal, and R. Flood.
Next gen pcfg password cracking. IEEE Trans-
actions on Information Forensics and Security,
10(8):1776–1791, Aug 2015.

[3] Peter Gazdı́k. Využitı́ heuristik při ob-
nově hesel pomocı́ GPU [online]. Vysoké
učenı́ technické v Brně. Fakulta informačnı́ch
technologiı́, 2016 [cit. 2017-04-08]. Dostupné
z: http://hdl.handle.net/11012/62088. Bakalářská
práce. Vysoké učenı́ technické v Brně. Fakulta
informačnı́ch technologiı́. Ústav informačnı́ch
systémů. Vedoucı́ práce Radek Hranický .

[4] L. R. Rabiner. A tutorial on hidden markov mod-
els and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–286,
Feb 1989.

[5] Mathew Weir, Sudhir Aggarwall, Breno
de Medeiros, and Bill Glodek. Password cracking
using probabilistic context-free grammars. In
2009 30th IEEE Symposium on Security and
Privacy, pages 391–405, May 2009.

[6] Alexander Meduna. Automata and Languages:
Theory and Applications. Springer Verlag, Lon-
don, GB, 2000.

[7] Christopher D. Manning and Hinrich Schiitze.
Foundations of statistical natural language pro-
cessing. Mass.: MIT Press, Cambridge, 1999.


	Introduction
	Related work
	Design of generator
	Implementation
	Experiments
	Conclusion
	References

