
http://excel.fit.vutbr.cz

Data flow visualization in N-node cluster
Vratislav Hais*

Abstract
Project InfiSpector is developed with an intention to be a helpful inspection tool for Infinispan
developers (NoSQL caching solution, distributed key-value store) during cluster debugging process.
In a problematic situations, manual checking of huge textual logs is too demanding, time consuming
and issues can be missed easily. InfiSpector displays cluster communication flows graphically so it
helps users to understand and visually see what is happening inside of a cluster. Our primary goal
is to help in situations where user could be able to see problematic cluster behaviour at the first
spot (e.g. congested traffic at the beginning, no traffic in specific time period, etc.)

Keywords: InfiSpector — Infinispan — Kafka — Druid — Big Data — Network — Cluster

Supplementary Material: Demonstration Video — Downloadable Code
*xhaisv00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction and Motivation

For the further understanding of my work it is neces-
sary to firstly say a few words about Infinispan. Infin-
ispan is an OpenSource NoSQL, key-value, caching
solution. The purpose of Infinispan is to expose a
data structure that is distributed, highly concurrent and
designed ground-up to make the most of modern multi-
processor and multi-core architectures. It is often used
as a distributed cache, but also as a NoSQL key/value
store or object database [1].

Our idea is to create a tool that would greatly help
Infinispan developers during their work while debug-
ging communication message flows inside Infinispan
cluster. There could be a wast number of messages
sent in the Infinispan cluster daily, so it is a relevant
and real-life problem to be able to efficiently detect a
root cause for any kind of an error. Currently, there
are no cluster monitoring tools tailored specifically for
Infinispan needs and developers or testers are forced
to check every message capture log manually. Logs
can be huge (giga or terabytes of simple textual infor-

mation) and that’s definitely not a pleasant task to find
an error there (better to say: a needle in a haystack).
There is non-trivial time consumption for such debug-
ging exercise to be completed and faults can be missed
really easily.

This was a prime motivation for starting a new
project under Infinispan ecosystem, called InfiSpector.
Our main goal is to monitor every single message that
is being sent in N-node Infinispan cluster, capture that
message, store it for further analysis and display nice
and helpful charting in our inspection tooling web user
interface.

2. InfiSpector

InfiSpector is an open source project created by a team
of students from FIT BUT which is led by Mgr. Tomáš
Sýkora. Personally, I am responsible for a graph de-
signing part. The goal of my bachelor thesis was to
create a time line diagram, which will also serve as a
time selector, and find a suitable solution for visualiz-
ing communication in N-node cluster.

http://excel.fit.vutbr.cz
https://www.youtube.com/watch?v=cDdg2MM_M14
https://github.com/infinispan/infispector
mailto:xhaisv00@stud.fit.vutbr.cz


Figure 1. chord diagram

As there is no tool tailored directly for Infinispan
specific messages it seems that InfiSpector is an ideal
tool for such task. It’s designed mainly for Infinispan,
but can be used for any other project with similar prob-
lem. InfiSpector is able to transparently show com-
munication between nodes. With newly added graph
(Fig 2) you can even select a desired time window for
detailed observation. The height of bars shows how
many messages have been sent during particular time
period. After the selection, 4 graphs with different
filters are displayed to the user. It is possible to add
various filters and even browse every single message
sent by a specific node.

The principal advantage of InfiSpector is in its sim-
plicity and possible general usage for similar problems
– everywhere where you need to monitor internal clus-
ter communication between N nodes ”talking” to each
other.

3. InfiSpector’s architecture

Core of InfiSpector’s architecture1 is built with the use
of Apache Kafka and Druid.io. Apache Kafka is an
open source project developed by the Apache Software
Foundation written in Scala and Java. Kafka is good
for:

• Building real-time streaming data pipelines that
reliably get data between systems or applica-
tions.

• Building real-time streaming applications that
transform or react to the streams of data [2].

In InfiSpector, Kafka is used to capture Infinispan com-
munication and send it to Druid database.

Druid is an open source column store designed for
online analytical processing queries on event data. Key
features:

1Draft of InfiSpector architecture

• Druid is able to aggregate and filter data in mil-
liseconds.

• Really low latency between when event happens
and when is displayed. Latency is caused only
by the time that it takes to deliver new event to
druid.

• Druid can be used by thousands of concurrent
users and is cost effective.

• Druid supports rolling updates so you are able
to browse your data and use query even during
software updates.

• Druid can handle trillions of events, thousands
of queries and petabytes of data [3].

4. Visualization
The main target of data visualization is to interpret
data in well arranged and the most informative way.
Data may be displayed as dots, lines or bars. Data visu-
alization makes data more accessible, understandable
and usable. The most common types of graphs are bar
graphs, pie charts, line graphs and cartesian graphs.

The primary goal of charts in general is the sim-
plicity. The more complex chart is, the greater is risk
that it will be hard to understand it.

5. Existing solutions

Before we have started creating our own project, we
have been looking for an existing solution. First we
tried to find whole project which monitors data flow in
cluster. We have found few projects, such as Ganglia2.
This solution, unfortunately, does not work offline.
Ganglia puts its client to cluster and provides moni-
toring using that client. Another disadvantage is that
Ganglia is not able to monitor communication in N-
node cluster. After a few days of searching we gave
up and decided to create our very own project. After
solving a few questions about technologies we have
been discussing what framework to use to create our
diagrams. There was a possibility to use Grafana3 or
Raw4. Grafana is great when you want to create dash-
board or some basic chart, but it didn’t fit exactly our
needs. Raw was a little better. You can create dia-
gram online and just copy created diagram (in SVG)
to your web page. There are some preset diagrams
from which you could choose and then design axises
and other little thing. What it lacks is, that you can’t
design diagrams any further.

2about Ganglia
3about Grafana
4about Raw

http://bit.ly/2oeJEYa
https://github.com/ganglia/monitor-core/wiki/Ganglia-Quick-Start
https://grafana.com/
http://rawgraphs.io/


Figure 2. Newly added timeLine graph

6. Graph design

In InfiSpector we use several types of graphs. Every
graph is programmed with the use of D3js framework.

D3 helps you bring data to life using HTML, SVG,
and CSS. D3’s emphasis on web standards gives you
the full capabilities of modern browsers without ty-
ing yourself to a proprietary framework, combining
powerful visualization components and a data-driven
approach to DOM manipulation [4].

In this section I will describe all graphs that are
used in our project and that I have created or modified.

6.1 Time Line
This is the newest graph in InfiSpector. It is a bar
chart that displays number of sent messages during a
specific time interval. User can select desired time by
clicking on a bar. Selected bar changes its color to red
(Fig. 3). Interval selection (selecting second bar) leads
to change of units with minimum and maximum value
depending on selected interval. In the end, if needed,
the user is able to select time frame with millisecond
accuracy via dynamic chart time zooming.

6.2 BiPartite
BiPartite is a graph used to display actual communica-
tion between nodes. We have found this solution on
D3js main page with examples and decided to use it.
I have successfully edited code to use our data which
required edition of existing functions and addition of
on click functions. When user clicks on the node, all
messages sent by this node are displayed in a box ded-
icated for this with possibility to browse messages one
by one (Fig. 4). When mouse is over the node name
label or lines displaying communication, section gets
focus and is widened over the whole graph (Fig. 7).

Four such graphs are displayed at a time. Every
graph have a specific filter (Fig. 6) that filters only mes-
sage with a particular string in their internal content.
User can also add his very own filters (Fig. 5) which
will add new graphs on the page.

6.3 Chord diagram
Such as BiPartite (Sec. 6.2) Chord diagram is used
to display communication between nodes. Chord dia-
gram was our first working graph added to InfiSpector
and was also found at D3js main page with examples.
Only difference between BiPartite and Chord is their
design (Fig. 1).

We have found that Chord diagram is unclear to
users and it will be removed in the next project version.
However, for demonstrative purposes works well.

7. Implementation
In this section I will describe implementation part of
each diagram and connection between front-end and
back-end.

Whole project is open-sourced with the use of
github5.

Diagrams are written in JavaScript with the help
of D3js library.

7.1 Time Line
Time line diagram creates a huge part of my bachelor’s
thesis. It’s my first true experience with creating a
graph from scratch. As mentioned earlier, graph is
created with use of D3js. D3js allows to use predefined
functions which ease chart creation. Unfortunately, I
could not use any predefined function because of the
format of our data. This means I had to come up
with conversion on spacing by trial-and-error method.
Next thing to solve was to create an array containing
values needed for spacing, width and height of bar
and the number of messages. Number of messages
in specific time are acquired in a for loop in which
is used JavaScript method called promise6. Promises
are used because we have to get values from Druid
(2) and it takes some time so it is appropriate to work
asynchronously.

Surprisingly the worst part for me were axes. It
had taken a really long time before I discovered how to

5link to github can be found at the begging of this work
6About promises

https://mzl.la/1jLTOHB


Figure 3. timeLine graph with selected bar

Figure 4. box with sent messages

Figure 5. adding filter

narrow lines and turn text. Animations (color changing,
text appearing) are pretty easy in D3js such as on click
functions and mouse over functions. Lowering layers
(in a meaning of units) was a little tricky. Here I
had to use global variables for storing selected values,
multiplier and past layers. I didn’t came up with an
idea how to change layers without removing whole
diagram so during every layer change I have to remove
diagram and recreate it.

The most tricky part was how to obtain selected
time frame. The problem is, that user can select too
wide interval, so it’s pointless to change units. In that
case, new multiplier (how many units represents one
bar) is set and units stays the same. When getting
selected time I had to take this into consideration. That
is main reason why I use global variables. As written
earlier I store multipliers, layers and values inside them
and with this I am able to calculate and return selected
time.

The final result can be seen at Fig 2.

7.2 BiPartite
BiPartite (Fig. 6) is an open source diagram which is
available at D3js official page with examples7. Code
and preview is here. This is a newer version than we
are using.

This code had to be changed to fit our needs. Such
as description, on click function, values and spacing
between names of nodes and graph itself. We have to

7D3js examples

get node names and communication before drawing
diagram. Getting node names is arranged by JavaScript
promise which sends request to Druid. Druid returns
an array of nodes. In the for loop we cycle through
this array and create a JSON of these names. With
this JSON and desired message filter we sends request
to Druid to receive matrix with communication. This
matrix is used as argument to draw BiPartite graph.

7.3 Filters
Filters create a really big part of InfiSpector. With
filters it is easier to monitor communication between
nodes. Every session starts with 4 default filters. Users
can easily add their own filters. All you have to do
is to fill entry under graphs with one or more filters
separated by comma and click a button. Another graph
is added for every filter.

Clicking a button calls function that withdraw con-
tent of entry. Content is parsed with regular expression
and stored in an array. We iterate through this array
and calls function with current value as an argument.
In this function we get communication matrix (as de-
scribed in section 7.2) and add graph with that matrix.

8. User Stories
This section describes a few real life InfiSpector use
cases.

8.1 Bad Coordinator Node
Every communication between servers has to have
a node coordinator. User might have problems with
communication and is not able to track coordinator.
With InfiSpector he simply opens a view with BiPartite
graph and spots which of the nodes is coordinator
(sends majority of messages to all nodes) or maybe he
can find out that there is none. With this information
he is able to track error much faster.

8.2 Clogged communication
When communication is started, there is a huge com-
munication traffic. After a while, communication

http://bit.ly/2nmLmr1
https://github.com/d3/d3/wiki/Gallery


Figure 6. Two different filters. You can see that there is different communication flow

Figure 7. On the left side graph with focused node, on the right side graph with no focus

should be stable. In other case, there is some prob-
lem. With our project, a user can easily look into time
line diagram (Sec. 7.1) and find out when this occurs.
If this information is not enough, he can also select
this time period and look closely to communication
with BiPartite chart. He can also browse each message
flowing from one node to another and can spot the
problem directly on UI without the need of opening
textual Infinispan logs.

8.3 Adding New Node
Sometimes you need to add new node into already
established cluster. With our tool, user is able to take a
look on what exactly happens and with which nodes
the new one starts to communicate and obtaining data
from.

9. Future Plans

In the future I would like to modify the code of time
line and add new higher layer - days. Also we are
going to do a performance analysis to see which part
slows our tool down and optimize it.

In the next version I will have to adapt on click
function on BiPartite, so it would apply filter on mes-
sage browsing. Progress of our project can be tracked
on github (link at the main page).

As soon as our tool is done, we would like to
cooperate with developers community and add new
desired functionality based on community feedback.
Also we would like to globalize InfiSpector, so it could
be used by any other relevant project community, not
only Infinispan.



10. Conclusion
In this paper I shortly described Infinispan, our moti-
vation to implement a helpful inspection tool, Infispec-
tor’s architecture and visualization from general point
of view. My own contribution is described mainly in
sections 5 – Graph design, 6 – Implementation and 7 –
User stories.

I was able to successfully design and implement
core of the visual user-facing InfiSpector’s interface
with the help of D3js library. Diagrams are working
perfectly and fit our needs for data visualization.

Acknowledgements
I would like to thank my supervisor Mgr. Tomáš
Sýkora for his help on this work and for the oppor-
tunity to cooperate on InfiSpector development. It
means a lot to me.

References
[1] Red Hat. Infinispan. [Online; visited 5.4.2017].

[2] Apache Software Foundation. Apache Kafka. [On-
line; visited 6.4.2017].

[3] Google groups. Druid. [Online; visited 6.4.2017].

[4] Mike Bostock. D3js. [Online; visited 5.4.2017].


	Introduction and Motivation
	InfiSpector
	InfiSpector's architecture
	Visualization
	Existing solutions
	Graph design
	Implementation
	User Stories
	Future Plans
	Conclusion
	References

