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Abstract
Precise simulations of many physical phenomena such as heat deposition, gravitation forces
or molecular dynamics are very time-consuming. This paper describes a computer fracture test
simulation of quasi-brittle materials and proposes techniques to reduce simulation time by effectively
using given compute resources as CPUs and GPUs.
The existing code created by the Faculty of Civil Engineering was analyzed and the bottleneck of
simulation was found. A code analysis by Alinea Map showed that 60% of the CPU work is done by
a single line of code. Even the work is done by a single line, the code has to be refactored to get
better performance. Vectorization, parallelization and loop unroll are used in this work. The GPU
code was analyzed too. The main problem was found in the nonaligned access to the input data
and in the need of exclusive writes of the output data.
The original source code can process 10 millions of iteration by one thread in 463 minutes. The
CUDA realization processes the same amount of iterations 4.63 times faster (in 100 minutes). The
optimized code described in this paper processes the same amount of iterations 3.85 times faster
(in 120 minutes) by a single thread while 21 times faster (in 21 minutes) with the use of eight
physical CPU cores.
Many comparisons of GPU and CPU implementations are often fogged by the fact that the CPU
realization does not use resources effectively. Contrary, this work shows that some problems may
be solved easier and potentially cheaper on a CPU. The cost of required hardware may be lower
because the CPU solution waits on main memory. Because of that, processors with lower frequency
are sufficient.
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1. Introduction

[Motivation] When renovating historical buildings or
bridges, some stones or bricks may need replacement.
This replacement has to have the same visual and me-
chanic characteristics as the original material. In order
to find the best replacement, some blocks of sandstone

from the original building are taken a sample. This
sample is then destroyed by the fracture test to in-
vestigate the material properties. Here, the computer
simulation can make the whole process faster, cheaper
and limit the need to extract large amount of the mate-
rial from the original construction. However, there are
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series of simulation with different parameters that have
to be executed. This paper shows how the simulation
can be accelerated on CPU with the use of multiple
threads and vectorization.

[Problem definition] The fundamental problem
of the existing implementation is a very low computa-
tional efficiency leading to very long simulation times.
This is given by the representation of the analyzed
sample in computer memory. The 3D domain covering
the tested sample is divided into a 3D mesh of points
connected by bonds together forming so called finite
elements, or bricks, see Fig. 1. At every iteration,
the force resultant inside the bricks is computed. If
the force exceeds a predefined limit, the sample begin
to break. Our goal is to redesign the underlying data
structures and refactor the simulation code to offer
high computational efficiency.

[Existing solutions] There are many different so-
lutions of the fracture test simulation. These solution
are mostly based on 2D models of the tested sample [1].
Limiting the model to two dimensions improves the
simulation speed by a great deal, however, imposes
many restriction on the model, e.g., the reaction forces
have to be distributed linearly. The symmetry in the
vector of load also provides a possibility to calculate
only half of the model. However, not all models can
be transformed into 2D without loss of precision. For
example, the samples and the models used for our sim-
ulation are composed from quasi-brittle round material
with a ”V shaped” indentation. This does not allow the
reduction to a 2D model.

[Contributions] In this work, two Intel R© Xeon R©
Processor E5-2470 at 2.30 GHz were used on computer
cluster Anselm from IT4Innovations. The proper use
of processors vectorization, memory aligned accesses,
and unrolled loops allowed to decrease the simulation
time from seven hours to two hours. Furthermore,
with use of eight processor cores on a single CPU,
the execution time was lowered down to 21 minutes.
The original GPU/CUDA solution handles the same
amount of work in nearly 100 minutes.

The CPU version was found to be now memory
bound. Up to 8 cores, the computational efficiency
is about 70%. Distributing the work among more
than 8 becomes inefficient due to cache coherence
and NUMA (multi-socket) overhead. Also increas-
ing the CPU frequency is not expected to yield better
performance since the memory has already become
saturated. Finally, the work on the CUDA implemen-
tation is still in progress, but multiple bricks sharing
same point require atomic/exclusive access to memory
and this leads to serialization of the process.

Figure 1. A Vertical slice through the V shaped
indentation of used model with the mesh of finite
elements.

Figure 2. Example of a three point bending test with
indentation.

2. Fracture Test
The fracture test is in general used for obtaining mate-
rial characteristics. Builders in modern constructions
have to stay safe from the point where constant load
on the materials causes fractures and the construction
collapse. This was an issue in the middle of 20th
century [2] when buildings suddenly collapsed due
to fatigue of material. Then the interest in fracture
mechanics created a new field in science. One of the
current interests in this domain is finding the right re-
placement for historical buildings. The material with
different properties may behave differently and cause
future aesthetic and structural damage.

The full name of this investigation is the fracture
test by three point bending. As the name may suggest,
a sample of material is put on two pads. Constant load
is then applied in the middle between the pads until
the material breaks in two.

A special form of the test is used in this work. The
sample has an indentation on the side opposite to point
of load, see Fig 2. The length of the indentation is
called the crack mount opening. The change in this
crack length may be observed. One of the results from
this test it the load, commonly marked as P, by crack
mount opening displacement, shortened as CMOD.
A civil engineer may specify parameters as fracture
toughness, energy or tensile strength of the sample
from this P-CMOD diagram.
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Figure 3. Example output of the test. P is force
applied on pads. CMOD is Crack mount opening
displacement from original position.

The diagram shape is given by the type of the mate-
rial [3]. The material can return from elastic behaving
to the original state. Fragile materials behave elasti-
cally, load is increasing with deformation, and then
when maximal load is applied, it breaks, for example
glass. Others, such as steel, behave elastically to the
maximal load too. Then they start to behave plastically.
Third is quasi-fragile type. It also behaves elastically
in the beginning. Then micro-cracks are created in the
material. In the point of maximal load, the main crack
is selected from the micro-cracks and widened to the
point of full separation.

The sandstone or steal-less concrete in the point of
maximal load is currently analyzed at the Institute of
Structural Mechanics at Brno University of Technol-
ogy .

3. Fracture Test Simulation
Ing. Jan Bedaň from the Institute of Structural Me-
chanics developed a simulation tool for the fracture
test. This simulation takes a model of analyzed mate-
rial and assumed characteristics of this material. The
result is the P-CMOD diagram. The tool has a limited
use, because the time required for a single simulation is
463 minutes. This is mainly given by a single-threaded
nature of the code. With the use of CUDA on an Nvidia
Tesla C2050, it takes the reference simulation from the
Institute 41 minutes to finish 4 millions of iteration.
However, these 4 million iterations do not capture the
whole P-CMOD diagram. Further in this work, the
results of 10 millions of iteration will be used. It is
safe to assume that the work in iteration is constant
and therefore 10 million iterations would have taken
circa 102 minutes.

This solution [4] takes Y-axis symmetry and repre-
sent only one half of the sample as the model. Instead
of the other half, we may imagine immovable plain
that is connected to the model via a cohesive function.
This function provides additional reaction to the points

Figure 4. Example of the brick element.

in crack area. That slows detaching of the points from
the plain. The points that are already detached from
the plain are still influenced by the cohesive function
and therefor they move slowly from the plain.

During the simulation, the point where the load is
applied, is being moved in direction of the load. Based
on the matrix of stiffness and the previous movement
of the points, the reactions in bricks are computed.
Next positions of all points are based on these reac-
tions. The points creating the crack have to accumulate
enough reactions to overcame cohesive function before
they can move. The most critical place of the simu-
lation is the computing of reactions. The inputs are
the bricks that are composed from eight references to
points, matrix of stiffness that is created for each brick,
positions of points and original positions of points.
Output is reaction of each point. Although, the term
brick may suggest that the birck is a cube or cuboid, it
can reach an arbitrary shape, see. Fig 4.

4. Analysis of the original solution

The first problem spotted is a huge number of itera-
tions that has to be executed compared to a relative
small number of bricks. The iteration has naturally
be executed in a sequential way. In each iteration, re-
actions inside each brick are determined. There are
implemented as nested for loops. For each brick, 576
(3 coordinate for 8 points to 3 coordinates for 8 points)
loop iterations are done.

The second problem is that the points for each
brick are not aligned in memory. This is a fundamental
problem for CPU vectorization and GPU computing.
Each brick is composed from references to eight points.
This leads to ineffective load and store operations. It
means, when a brick is assigned to one thread, some
of the threads has to access the same memory location
leading in racing condition. It would be ideal if each
thread had its own location in main memory, where to
read from and store to. Also, the threads/vector lines
logically next to each other should load blocks from
data from neighboring locations.



5. Implementation

We first focus on the CPU version in this work. The
baseline of simulation time was set to 27 815 seconds
for the reference single threaded code.

I would like to make a little side note here, in a case
that someone would look for inspiration or solution for
their own simulation here. It is bad idea to flush data
in the main iteration process, if they are not required
on the output during the iteration. In this case, every
10 000 iteration the data for P-CMOD diagram was
printed into file and flushed. As the I/O operations are
typically very slow, it is better to let the flush outside
the loop and write all data at once.

The modern CPU has vectorization units [5] and
registers that allows them to apply the same operation
on multiple data elements at once. Such examples are
the Streaming Single Instruction Multiple Data Exten-
sion (SSE) or more recent Advanced Vector Extension
(AVX [6]). The number of processed elements is given
by the capabilities of the extension used, the size of
processed data type and size of the vectorization regis-
ters. The SSE uses 128 bit registers that may process
four single precision floating point numbers. The ver-
sion SSE2 was able to use those registers for four 32
bit integers, two double precision floating point num-
bers or others. The AVX has 256 bit wide registers
and is capable to process eight single or four double
precision floating point numbers.

The first question was if the AVX can be used.
When the differences in the point position are com-
puted, they are aligned in the memory [7]. This means
that they may be simple loaded into AVX registers.
Otherwise, they would have to be gathered from the
different memory locations and lined up. The gath-
ering would increased the overhead of vectorization
and the speed up would be much lower. The matrix of
stiffness is aligned too.

The original code has used double precision float-
ing point numbers. When replaced with single preci-
sion ones, the result was computed 40 % faster but
wrongly as may be seen in Figure 5. The reactions
are so small that the change in position is not captured
well when added to original positions stored in single
precision floating point variables.

Moreover, the GNU Compilator assumed that over-
head in double precision version is too big to apply
vectorization meaningfully. When the vectorization
was forced on, the simulation time was deceased from
27 815 seconds down to 12 827 seconds, yielding a
speedup of 2.16.

Following optimizations was focused at thread
level parallelization. Two processors, each with eight
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Figure 5. Comparison of result using double
precision (correct-width) and single precision
(incorrect-thin).

cores, was used in the tests. The work was distributed
by using #pragma omp parallel region on the loop
for bricks. In Fig. 7, you can see the scalability of de-
veloped solutions. This figure tells us how much faster
the solution is compared to sequential version. In ideal
case, the speed-up is same as the number of processor
cores used. However, that is nearly impossible due
to parallelization overhead. When the number of pro-
cessors goes up from 8 to 16, two physical processors
are used. The scaling on two processors is inefficient
due to large amount of communication between these
two processors. It could be removed by better decom-
position over processors. For example, the Message
Passing Interface (MPI) would allowed to distribute
data to physical processors. However, finding the right
way to split the work is not an easy task. In this simu-
lation, one brick may use points at different memory
locations and some threads will need to access memory
on the other processor.

On the other hand, 8 cores on single processor
presented further in text is already so fast that it has to
wait on main memory. Because of that the distribution
on more physical processors was not analyzed in depth.

The following phase in optimization was to unroll
the critical loop [8]. As for now, there was a loop for
each coordinate of the eight points creating the brick.
When unrolled three times, all coordinates of the cur-
rent point are calculated at once. This provides a lower
overhead for vectorization. The unrolled loop iterates
only 8 times instead of 24, but does three times more
work in each iteration. Thanks to that, the processor
may prepare data for next iteration during previous
one (using memory pre-fetch, out-of-order execution,
etc.). The simulation time achieved by applying this
optimization stopped at 7 584 seconds. That is 1.69x
faster than vectorized version and 3.66x faster than
original code.

The code was then analyzed by the Intel VTune
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Figure 6. Execution times reached on different
number of physical CPU cores. Y range from 8 000
seconds up is cut off. Precise times may be found in
Table 1

tool. This tool showed that overhead of the #pragma
omp parallel for begun to be the slowest part of the
code. The process of creating a team of threads for ev-
ery single brick slowed the computation significantly.
In reaction to this analysis, the #pragma omp paral-
lel was moved above the whole iteration process (ten
million iterations). This way, all the threads are cre-
ated once. The work is then distributed by #pragma
omp for. This last code modification decreases the
simulation time of the parallel version down to 1 320s.

6. Results
The time required for a single simulation executed by
the sequential version went down from 27 815 to 7 531
seconds. That is 3.69 times faster with use of the same
hardware. Other times may be seen in Table 1. If all 8
cores on processor are used, the final simulation time
is 1 320 seconds and the solution is faster 21 times
then original sequence program.

Table 1. Table of simulation times in different states
of optimization. Each line contains optimizations
from previous one.

Number of cores 1 2 4 8 16

Original 27 815s 14 545s 7 738s 4 611s 4 203s
Vectorized (AVX) 12 827s 7 014s 4 023s 2 744s 3 291s
Unrolled 7 584s 4 371s 2 673s 2 065s 2 681s
One threads creation 7 531s 3 931s 2 124s 1 320s 1 903s

The scaling of different versions of the code is
shown in In Fig 7. For 16 cores, the simulation slows
down due to the transfers between cache and memories
of two CPUs. The original solution scales a bit better
than others because a long time of processing allows
to overleap the communication better. The final solu-
tion using vectorization, loop unroll and single thread
creation is the second best in terms of scaling.

7. Conclusions
[Paper Summary] This paper analyzed an existing
solution of computer simulation of fracture test for
quasi-brittle materials and presented techniques to op-
timize the execution. These techniques cover vector-
ization, parallelization, loop unrolling and correct plac-
ing of parallel sections to reduce the overhead. The
main problems with CUDA realization were presented.
The main disadvantage for computing this problem
on graphic card are the unaligned reads and exclusive
writes into the memory.

[Highlights of Results] The original solution took
27 815 seconds (7.7 hours) on a Intel Xeon E5-2470
processor. The fully optimized solution now takes
7 531 seconds (2.1 hours) when executed on a sin-
gle core. When all 8 physical cores of CPU are used,
the simulation time is 1 320 seconds, almost 21 times
faster on the same hardware. This solution is also 5
times faster than the CUDA solution currently used
at the Institute of Structural Mechanics Brno Univer-
sity of Technology. The further performance improve-
ments are limited by the latency of main memory.

[Paper Contributions] This work presented how
different the execution time of program on the same
processor may be. We show how much the code can
be accelerated by careful optimization of the algorithm
to the proper hardware.

[Future Work] In the near future, the scalability
of the final solution will be analyzed on computer clus-
ter Salomon. This cluster allows the programmer to
specify frequency of processor. It should more exactly
determinate the frequency with the processor becomes
limited by the memory and this reduce the power con-
sumption of the processor. Further experiments with
the CUDA solution based on this work are planned as
they are requested by the Institute of Structural Me-
chanics.

Acknowledgements

I would like to thank my supervisor Ing. Jiřı́ Jaroš,
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Figure 7. Scalability of the solution. Ideal scalability
is linear and as close to function f(x)=x as possible.
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8. Appendices

1 for (int iteration = 0; iteration < MAX_ITERATION; iteration++) {
2 resetReactions();
3 // For each brick in the model
4 for (int i = 0; i < numberOfBricks; i++) {
5 double deformations[] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
6 // Get movement from original position for each point
7 for (int j = 0; j < 8; j++)
8 {
9 deformations[j * 3] = x[indexesOfNodes[i * 8 + j]] - xStart[indexesOfNodes[i * 8 + j]];

10 deformations[j * 3 + 1] = y[indexesOfNodes[i * 8 + j]] - yStart[indexesOfNodes[i * 8 + j]];
11 deformations[j * 3 + 2] = z[indexesOfNodes[i * 8 + j]] - zStart[indexesOfNodes[i * 8 + j]];
12 }
13  
14 int indexOfMassPoint = 0;
15 int helpIndex = 0;
16 // For each coordinate of each point (3x8)
17 for (int j = 0; j < 24; j++)
18 {
19 if (j % 3 == 0 && j > 0)
20 {
21 helpIndex = 0;
22 indexOfMassPoint++;
23 }
24 // Get reaction on the other coordinates in current brick
25 double reaction = 0;
26 for (int k = 0; k < 24; k++)
27 {
28 reaction += matrixOfStiffness[i * 24 * 24 + j * 24 + k] * deformations[k];
29 }
30 // Store reaction for correct coordinate
31 if (helpIndex == 0) rx[indexesOfNodes[i * 8 + indexOfMassPoint]] -= reaction;
32 else if (helpIndex == 1) ry[indexesOfNodes[i * 8 + indexOfMassPoint]] -= reaction;
33 else if (helpIndex == 2) rz[indexesOfNodes[i * 8 + indexOfMassPoint]] -= reaction;
34  
35 helpIndex++;
36 }
37 }
38 printResults(iteration);
39 getNewPointPositions();
40 applyCohesiveFunction();
41 }

Code sample 1. The original code computing the simulation. Full code computing reaction is displayed.



1 // One time creating threads
2 #pragma omp parallel
3 for (int iteration = 0; iteration < MAX_ITERATION; iteration++) {
4 resetReactions();
5 // Each thread takes same number of different bricks
6     #pragma omp for schedule(static)
7     for (int i = 0; i < numberOfBricks; i++) {
8         double valX = 0;
9         double valY = 0;

10         double valZ = 0;
11  
12         double deformations[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
13  
14         for (int j = 0; j < 8; j++) {
15             deformations[j * 3] = x[indexesOfNodes[i * 8 + j]] - xStart[indexesOfNodes[i * 8 + j]];
16             deformations[j * 3 + 1] = y[indexesOfNodes[i * 8 + j]] - yStart[indexesOfNodes[i * 8 + j]];
17             deformations[j * 3 + 2] = z[indexesOfNodes[i * 8 + j]] - zStart[indexesOfNodes[i * 8 + j]];
18         }
19 // Help compiler to assume matrix aligned for SIMD
20         double* stiffness = this->matrixOfStiffness;
21         __builtin_assume_aligned(stiffness, 64);
22  
23         int indexOfMassPoint = 0;
24 // Go by point instead of by coordinate (3x unrolled)
25         for (int j = 0; j < 24; j+=3) {
26             double reactionX = 0;
27             double reactionY = 0;
28             double reactionZ = 0;
29  
30             int baseX = i * 24 * 24 + j * 24;
31             int baseY = i * 24 * 24 + (j+1) * 24;
32             int baseZ = i * 24 * 24 + (j+2) * 24;
33  
34             #pragma omp simd reduction(+: reactionX, reactionY, reactionZ)
35             for (int k = 0; k < 24; k++) {
36                 valX = stiffness[baseX + k] * deformations[k];
37                 valY = stiffness[baseY + k] * deformations[k];
38                 valZ = stiffness[baseZ + k] * deformations[k];
39                 reactionX += valX;
40                 reactionY += valY;
41                 reactionZ += valZ;
42             }
43  
44             rx[indexesOfNodes[i * 8 + indexOfMassPoint]] -= reactionX;
45             ry[indexesOfNodes[i * 8 + indexOfMassPoint]] -= reactionY;
46             rz[indexesOfNodes[i * 8 + indexOfMassPoint]] -= reactionZ;
47             indexOfMassPoint++;
48         }
49     }
50 printResults(iteration);
51 getNewPointPositions();
52 applyCohesiveFunction();
53 }

Code sample 2. The modified code. The #pragma omp parallel , #pragma omp simd and #pragma omp
for are correctly placed in the code and the code is unrolled.
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