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Abstract
Markov models are widely used in many areas of science and engineering in order to evaluate the
probability of certain events of interest. Quantitative analysis of such models typically proceeds
through numerical methods or simulation-based evaluation. Since the state space of the models can
often be large, several approximation techniques have been proposed. For various systems, level
of precision affects the soundness of verification results, so accurate quantification of approximation
error is crucial. In this work we focus on adaptively-driven aggregation technique and evaluate
its key performance aspects. The key contribution of this work is improving aggregation strategy
and the theoretical bounds on the approximation error. Our technique leads to up to 3 orders of
magnitude precision improvement over existing methods and allows one to analyse larger models
with a higher accuracy.
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1. Introduction

Markov models have been widely used to analyse relia-
bility and performance of computer networks, commu-
nication and security protocols [1, 2], and to study var-
ious quantitative attributes of biochemical reaction net-
works [3] as well as molecular devices [4]. Quantita-
tive analysis of time-bounded Markov chains typically
proceeds through numerical analysis, via solution of
equations yielding the probability of the system resid-
ing in a given state at a given time, or simulation-based
exploration of its execution paths. There are many
situations where highly accurate probability estimates
are necessary, for example for reliability analysis in
safety-critical systems or for predictive modelling in
scientific experiments, but this is difficult to achieve in

practice due to the state-space explosion problem [5].

In order to enable the handling of larger state
spaces, two types of techniques have been introduced:
state aggregation and state-space truncation. State ag-
gregation techniques build a reduced state space using
e.g. bisimulation quotient [6]. State-space trunca-
tion methods, e.g. fast adaptive uniformisation (FAU)
[7, 8], on the other hand, only consider the states whose
probability mass is not negligible, while computing
the total probability loss.

Imprecise values are known to cause robustness
failure, in the sense that the satisfaction of temporal
logic formulae is affected by small changes to the
probability bound. In [5] there has been proposed a
novel adaptive aggregation method for Markov chains
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that works over a finite time interval by clustering the
state space of a model sequentially in time, with the
quality of the current aggregation being quantified and
used to derive explicit error bounds. This technique
was implemented and evaluated on two case studies
of chemical reaction networks and lead to a marked
improvement in numerical precision.

1.1 Key contributions
In this work we focus on adaptively-driven aggrega-
tion technique proposed in [5] and evaluate its key
performance aspects. Based on this analysis, we im-
prove existing method by introducing more efficient
approach to model abstraction and derive theoretical
error bounds on this approximation. Compared to [5],
our technique makes use of average outcoming prob-
ability between clusters to define abstract transition
matrix, which preserves system dynamics to a higher
degree. We then compare both techniques on three
case studies and demonstrate that these derived bounds
are more accurate by up to 3 orders of magnitude and
yield a considerable performance increase.

1.2 Related work
A widely studied model reduction method for Markov
models is state aggregation based on (bi-)simulation
equivalence [6]. This technique exploits symmetries
of a concrete model and performs exact numerical
computation but, unfortunately, can only be applied to
a specific domain of Markov processes.

An alternative method to deal with large state
spaces is truncation, e.g. fast adaptive uniformisation
(FAU) [7, 8], where a lower bound on the transient
probability distribution of the concrete model is com-
puted, and the total probability mass that is lost due
to this truncation is quantified. The efficiency of the
truncation techniques depends on the distribution of
the significant part of the probability mass over the
states, and may result in poor accuracy if this mass is
spread out over a large number of states, or whenever
the selected window of states does not align with a
property of interest.

Related to the state aggregation techniques, [9]
presents an algorithm to approximate probability dis-
tributions of a Markov process forward in time, which
served as an inspiration of the adaptive scheme pro-
posed in [5], where a formal error analysis steers the
adaptation. This novel use of derived error bounds al-
lows far greater accuracy and flexibility as it accounts
also for the past history of the probability mass within
specific clusters. Compared to this method, we make
use of average outcoming probability between clus-
ters to define abstract transition matrix and provide

Figure 1. A simple DTMC.

theoretical bounds on such approximation.

2. State aggregation of Markov models
In this section, we use discrete-time Markov chain
(DTMC) to introduce some basic terminology, explain
philosophy behind adaptive aggregation techniques
and point out differences between existing approach
and a new one.

Formally, DTMC is defined as a double (S,P),
where

– S = {s1, ...,sn} is the finite set of states;
– P : S×S 7→ [0,1] is the transition probability

matrix, such that ∀s ∈ S : ∑s′∈S P(s,s′) = 1

Figure 1 provides an example of a simple
DTMC. The model is initialised via distribution
p0 : S 7→ [0,1],∑s∈S p0(s) = 1 and its transient prob-
ability distribution at time step k ≥ 0 is

pk+1(s) = ∑
s′∈S

pk(s′)P(s′,s). (1)

We are interested in providing an efficient computation
of the vector pk.

2.1 Adaptive aggregation techniques
Basically, a state aggregation is about clustering ad-
jacent states into larger groups and treating such
groups as usual states. Formally, we look for
partition Φ = {ϕ1, ...,ϕm}, such that

⋃
ϕ∈Φ ϕ = S,

∀i, j ∈ [1,m] : i 6= j⇒ ϕi∩ϕ j = /0 and m� n. The
latter condition represents our goal to reduce the state
space to a reasonable ratio so that performance in-
crease is achieved. Initial probability distribution π0
of this abstract state space is simply

π0(ϕ) = ∑
s∈ϕ

p0(s), (2)

i.e. sum of all state probabilities within current cluster.
Inverse transition from πk to p̃k, where p̃k represents
approximate probability distribution at some time k, is
performed the following way:



Figure 2. Abstraction that exploits average incoming
probabilities may not preserve some properties of a
DTMC.

p̃k(s) =
πk(ϕ)

|ϕ|
,s ∈ ϕ, (3)

that is, the probability of a cluster is uniformly dis-
tributed between the states.

Since we introduced a new abstract state space Φ,
abstract transition matrix Π : Φ×Φ 7→ [0,1] must be
defined as well. In [5], these transitions are computed
the following way:

Πin(ϕ,ϕ
′) =

1
|ϕ ′| ∑s∈ϕ

∑
s′∈ϕ ′

P(s,s′). (4)

The intuition behind such transition matrix is that it
encompasses the average incoming probability from
clusters ϕ to ϕ ′. Now we can calculate approximate
transition probability at any given time k ≥ 0 similarly
as in 1:

πk+1(ϕ) = ∑
ϕ ′∈Φ

πk(ϕ
′)Π(ϕ ′,ϕ). (5)

Figure 2 illustrates a potential problem of this
method: abstraction built upon a model may not pre-
serve some important properties of a DTMC, namely,
transition probabilities from a specific state may not
sum to one. This is caused by approximating the tran-
sitions between abstract states as average incoming
(instead of outcoming) probabilities. In Figure 3 we
applied the same abstraction while using 6 to compute
abstract transition matrix. This approach preserves all
properties of DTMC and leads to considerable preci-
sion improvement (see Table 1).

Πout(ϕ,ϕ
′) =

1
|ϕ| ∑s∈ϕ

∑
s′∈ϕ ′

P(s,s′) (6)

The use of 4 in [5] is motivated by the structure of
equations for explicit error bounds. Here we will elim-
inate this flaw by deriving such bounds while using 6
in our abstraction.

Figure 3. Here the numbers inside the circles denote
probability distribution. Aggregation may lead to an
error before any iteration is performed.

3. State aggregation error

Let us first examine how an error is produced when
we use an abstract model instead of a concrete one.
Let (S,P) be DTMC and p0 be initial probability dis-
tribution. Assume that a specific abstraction (Φ,Π) is
given, where Π is computed using 6. Probability dis-
tribution π0 of (Φ,Π) is computed using 2. Thus, we
have already produced some error by approximating
p0(s) by p̃0(s). Figure 3 illustrates this phenomenon.

Transition probabilities Π between clusters also
serve as (an approximation of) transition probabilities
between concrete states. Let P̃ denote approximate
transition probability between states which is com-
puted as

P̃(s,s′) =
Π(ϕ,ϕ ′)

|ϕ ′|
,s ∈ ϕ,s′ ∈ ϕ

′ (7)

Using these transitions instead of ”real” ones for trans-
porting probability mass between clusters (i.e. states)
naturally generates an error as Figure 4 indicates.

3.1 Theoretical bounds on L1 norm
Let ek(s) = p̃k(s)− pk(s) be approximation error for
a probability distribution at time k. In order to reason
about approximation precision, we use the next metric

||ek||1 = ∑
s∈S
|ek(s)| ,

that is, an L1 norm of an error vector. The next theorem
explicitly characterises theoretical bound on approxi-
mation error.



Figure 4. We perform one iteration with a concrete
model and its abstraction; state B (C) has effectively
lost (gained) some probability mass.

Theorem 1. Consider an abstraction upon (S,P)
characterised by (Φ,Π). Let ||e0||1 be aggregation
error. Then, for the L1 norm of the error vector at time
k, we obtain

||ek+1||1 ≤ ||ek||1 + ∑
ϕ ′∈Φ

πk(ϕ
′)τ(ϕ ′) (8)

where

τ(ϕ ′) = ∑
ϕ∈Φ

∑
s∈ϕ

∣∣∣∣Π(ϕ ′,ϕ)

|ϕ|
−

∑s′∈ϕ ′ P(s′,s)
|ϕ ′|

∣∣∣∣ (9)

represents average outgoing transition probability change
for the current cluster, that is, the total difference be-
tween concrete transition probabilities and abstract
ones. The product of this value with the probability
of a cluster πk(ϕ

′) yields the amount of probability
mass erroneously transported to other states. Finally,
the sum over all clusters of such local error gives us
the (upper bound of) total probability difference. The
proof of this theorem is presented in Appendix.

3.2 Aggregation strategy
Now we look into 8 in more detail and derive some
rules for efficient aggregation strategy. First, initial
aggregation error ||e0||1 encompasses state probabil-
ity change during aggregation and tends to zero if the
states with similar probability are clustered together.
Second, error accrual in 8 is proportional to both π(ϕ ′)
and τ(ϕ ′); the latter value is usually more significant
for larger cluster, e.g. consider what would the sum-
mand ∣∣∣∣Π(ϕ ′,ϕ)

|ϕ|
−

∑s′∈ϕ ′ P(s′,s)
|ϕ ′|

∣∣∣∣

be evaluated to if |ϕ|= |ϕ ′|= 1. Thus, we could keep
the resulting product low if we avoid using large clus-
ters for states with significant probability.

Also, since the probability distribution over states
is not constant over time, 8 implies that after some
iterations our abstraction will start to generate a sig-
nificant amount of error. Therefore, we are forced to
adapt our abstraction to the new probability distribu-
tion (hence the word ’adaptive’), i.e. reaggregate the
model. The resulting algorithm works by clustering
the state space sequentially in time, where the quality
of each aggregation can be quantified using 8.

3.3 Aggregation scheme
During model aggregation, probability distribution is
used to define a maximum cluster size a state can be in.
In general, the size of a cluster is inversely proportional
to probabilities of concrete states, i.e. states with sig-
nificant probability are usually aggregated to smaller
clusters. In [5], an array of fixed sizes have been used
to define aggregation scheme. Here we compute this
scheme using the following formula:

maxClusterSize(p) =
⌊

M− M−1
1− e−s (1− e−sp)

⌋
,

(10)
where p is the probability of a state and M is a global
maximum cluster size. For p ranging from 0 to 1,
10 yields sizes from M to 1. Parameter s represents
a steepness of a curve and, along with parameter M,
may be easily adjusted to achieve greater flexibility.

In [5] the state aggregation is driven by the state
spatial locality, i.e. adjacent states are more likely to
be clustered together. In our method we use a more
general approach where states are aggregated accord-
ing to their mutual transition probabilities, that is, two
states connected by a transition with a high proba-
bility are more likely to be in a single cluster. This
technique allows us to analyse models with a more
complex structure of the underlying state space.

4. Experimental evaluation
The algorithms for both aggregation techniques have
been implemented in PRISM (the explicit engine) [10].
We run all experiments on a CentOS 6.5 server with
12x Intel Xeon E5-2640 (6 cores at 2.5 GHz) and
64 GB RAM with all the algorithms being executed
sequentially (1 thread). First, we evaluate both tech-
niques on a simple model using neutral aggregation
strategy, that is, the one that leads to a similar be-
haviour for both methods. We compare the accuracy
of the empirical (i.e. compared to non-aggregating



simulation) results. For this experiment, we use a dis-
cretized version of the Lotka-Volterra model [5]. In
the Table 1 we report a maximum value (”max”) and
an L1 norm (”L1”) of the empirical error for and old
technique exploiting incoming probabilities (”in”) as
well as for the new approach (”out”). It is clear that
using average outgoing probabilities and, therefore,
preserving the properties of DTMC, yields an accu-
racy increase by up to 5 orders of magnitude.

Table 1. Empirical accuracy comparison

160k 360k 640k 1M

in max 5.04E-5 7.56E-6 4.09E-6 2.74E-7
L1 5.31E-5 5.11E-5 1.22E-4 6.27E-5

out max 5.02E-10 5.75E-9 7.78E-10 7.03E-10
L1 1.00E-9 4.24E-8 4.43E-8 1.68E-7

Next, we evaluate both methods on 3 different
case studies with model sizes ranging from 400k to
2M states and compare both acceleration (”acc”) and
theoretical bounds (”bound”) acquired. In order to
ensure comparability between the two schemes, aggre-
gation strategy is tuned individually for each model
and technique. The goal here is to achieve maximum
performance while keeping the theoretical bound rela-
tively low. The models used here are, again, discretized
versions of the Lotka-Volterra model, two-component
signalling pathway and prokaryotic gene expression
[5]. In all cases we can observe a clear improvement
both in precision and performance compared to [5].

Table 2. Theoretical bound: Lotka-Volterra model.

420k 800k 1.2M 1.7M

in acc 5.46 4.73 4.82 4.82
bound 4.13E-1 5.36E-1 8.63E-1 1.91E-1

out acc 6.03 6.35 5.12 5.99
bound 4.94E-3 9.74E-3 3.67E-3 8.43E-4

Table 3. Theoretical bound: Prokaryotic gene
expression.

850k 1.4M 1.7M 1.9M

in acc 5.21 4.82 6.65 8.34
bound 2.53E-1 2.65E-1 8.49E-1 9.85E-1

out acc 6.48 6.88 8.12 9.71
bound 5.39E-3 5.04E-3 5.16E-3 6.82E-3

5. Conclusions
In this work we have focused on adaptively-driven
aggregation technique for Markov chains and have

Table 4. Theoretical bound: Two-component
signalling pathway.

420k 920K 1.3M 1.6M

in acc 1.59 2.45 2.49 3.27
bound 3.51E-2 5.47E-2 7.79E-2 9.09E-1

out acc 1.72 2.48 3.63 5.35
bound 4.35E-4 5.84E-3 8.27E-4 6.86E-3

evaluated its key performance aspects. We then im-
proved this method by introducing a new approach to
state aggregation and deriving theoretical error bounds
on such approximation. Our technique provides up
to 3 orders of magnitude precision improvement, as
well as significantly increases simulation performance.
This allows one to efficiently analyse larger models
with a higher accuracy. Future work will include a
deeper study on the properties of Markov chains in or-
der to apply this method for general models. We plan
to introduce other metrics to control the error, more
specifically, the infinity norm and the probability of
satisfying a temporal logic specification. We also plan
to apply our approach to the verification and perfor-
mance analysis of complex safety-critical computer
systems, where precision guarantees play a key role.
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Appendix

Proof of Theorem 1. Let t(s′,s) = P̃(s′,s)−P(s′,s). Using 1 and the definition of ek:

ek+1(s) = p̃k+1(s)− pk+1(s) = ∑
s′∈S

p̃k(s′)P̃(s′,s)− pk+1(s) = ∑
s′∈S

(pk(s′)+ ek(s′))(P(s′,s)+ t(s′,s))− pk+1(s)

= ∑
s′∈S

pk(s′)P(s′,s)+ ∑
s′∈S

ek(s′)P(s′,s)+ ∑
s′∈S

(pk(s′)+ ek(s′))t(s′,s)− pk+1(s)

= ∑
s′∈S

ek(s′)P(s′,s)+ ∑
s′∈S

p̃k(s)(P̃(s′,s)−P(s′,s))

We are interested in providing an L1 norm of an error vector, that is, the sum of the absolute values of its
components:

||ek+1||1 = ∑
s∈S
|ek+1(s)|= ∑

s∈S

∣∣∣∣∣∑s′∈S
ek(s′)P(s′,s)+ ∑

s′∈S
p̃k(s)(P̃(s′,s)−P(s′,s))

∣∣∣∣∣
≤∑

s∈S

∣∣∣∣∣∑s′∈S
ek(s′)P(s′,s)

∣∣∣∣∣+∑
s∈S

∣∣∣∣∣∑s′∈S
p̃k(s)(P̃(s′,s)−P(s′,s))

∣∣∣∣∣
Let us inspect the first term:

∑
s∈S

∣∣∣∣∣∑s′∈S
ek(s′)P(s′,s)

∣∣∣∣∣≤∑
s∈S

∑
s′∈S

∣∣ek(s′)
∣∣P(s′,s) = ∑

s′∈S
∑
s∈S

∣∣ek(s′)
∣∣P(s′,s) = ∑

s′∈S

∣∣ek(s′)
∣∣∑

s∈S
P(s′,s)

= ∑
s′∈S

∣∣ek(s′)
∣∣= ||ek||1

For the second term, running both summations by clusters and then using 3 and 7, we obtain

∑
s∈S

∣∣∣∣∣∑s′∈S
p̃k(s)(P̃(s′,s)−P(s′,s))

∣∣∣∣∣= ∑
ϕ∈Φ

∑
s∈ϕ

∣∣∣∣∣ ∑
ϕ ′∈Φ

∑
s′∈ϕ ′

p̃k(s)(P̃(s′,s)−P(s′,s))

∣∣∣∣∣
= ∑

ϕ∈Φ

∑
s∈ϕ

∣∣∣∣∣ ∑
ϕ ′∈Φ

∑
s′∈ϕ ′

π(ϕ ′)

|ϕ ′|

(
Π(ϕ ′,ϕ)

|ϕ|
−P(s′,s)

)∣∣∣∣∣
= ∑

ϕ∈Φ

∑
s∈ϕ

∣∣∣∣∣ ∑
ϕ ′∈Φ

π(ϕ ′)

(
∑

s′∈ϕ ′

Π(ϕ ′,ϕ)

|ϕ ′||ϕ|
− ∑

s′∈ϕ ′

P(s′,s)
|ϕ ′|

)∣∣∣∣∣
= ∑

ϕ∈Φ

∑
s∈ϕ

∣∣∣∣∣ ∑
ϕ ′∈Φ

π(ϕ ′)

(
Π(ϕ ′,ϕ)

|ϕ|
−

∑s′∈ϕ ′ P(s′,s)
|ϕ ′|

)∣∣∣∣∣
≤ ∑

ϕ∈Φ

∑
s∈ϕ

∑
ϕ ′∈Φ

π(ϕ ′)

∣∣∣∣Π(ϕ ′,ϕ)

|ϕ|
−

∑s′∈ϕ ′ P(s′,s)
|ϕ ′|

∣∣∣∣
= ∑

ϕ ′∈Φ

∑
ϕ∈Φ

∑
s∈ϕ

π(ϕ ′)

∣∣∣∣Π(ϕ ′,ϕ)

|ϕ|
−

∑s′∈ϕ ′ P(s′,s)
|ϕ ′|

∣∣∣∣
= ∑

ϕ ′∈Φ

π(ϕ ′) ∑
ϕ∈Φ

∑
s∈ϕ

∣∣∣∣Π(ϕ ′,ϕ)

|ϕ|
−

∑s′∈ϕ ′ P(s′,s)
|ϕ ′|

∣∣∣∣
= ∑

ϕ ′∈Φ

π(ϕ ′)τ(ϕ ′)

Finally, by adding both terms:



||ek+1||1 ≤ ||ek||1 + ∑
ϕ ′∈Φ

π(ϕ ′)τ(ϕ ′)

we complete the proof. �
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