BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Applying Recurrent Neural Network To Music

Generation

Marek Majer*

Abstract

In this paper, we will teach computer to generate music sequences. We do this by modeling the
probability of music sequences by a recurrent neural network and then sampling consecutive frames
from the learned distribution. By further adjusting parameters of neural network we have managed
to get 9.5 loss on validation data. Accuracy of the network was 0.17 with dropping out units at
rate p = 0.5, which is in real usage higher, because of strict accuracy function. Work with neural
networks led to creation of NeuralPiano, an application for desktops, that allows user to generate

new music.

Keywords: Generating Music —Sequence modeling — Neural Networks — LSTM

Supplementary Material: Downloadable Code

*xmajer15@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

Music is one of the universal languages known to man.
There were some artists who could understand that
language a bit more than others. They could create
beautiful and meaningful pieces. Could computer, one
of the most stupid thing by itself, be able to understand
what makes music beautiful and deliberate, if we just
show it enough music data?

Computers nowadays are able to perform complex
computations in a split second, which allows us to
simulate some functions of human brain. We can then
present artificial system with work of any artist, and the
artificial system will slowly but steadily learn complex
patterns in sequences

There is plenty of music editing softwares already
available on market. Each of them offers many func-
tions to adjust, rearrange, modify and anyhow change
user’s music. It’s possible to delete parts of your music
in editor in a no time, but there isn’t a way to do the

exact opposite, let the machine create music.

My aim si to create a program, which will not only
allow the user to delete and adjust their music, but one
that will also be able to recognize patterns in user’s
music and generate tones that will fit into others.

There has already been some papers about generat-
ing music using recurrent neural networks. The work
of Boulanger-Lewandowski[1] was motivation for my
work with neural networks and also provided datasets,
that are used in this work.

Long Short-Term Memory (LSTM) is a special version
of reccurent neural network with capabilities to store
information for a longer time in a memory. It was in-
trocuded by Hochreiter in 1997 [2]. LSTM in contrast
to basic reccurent networks have special memory cell,
which can store previous information very effectively,
because of various gates (functions), that decide which

http://excel.fit.vutbr.cz
http://www.stud.fit.vutbr.cz/~xmajer15/RNN/script.py
mailto:xmajer15@stud.fit.vutbr.cz

information is essential and the way it is stored. I use
LSTM that is defined by following:

iy = 6(Wix; + Uihy—y +bi)
C; = tanh(Wex; + Uchyy + be)
Ji=0gWpxi +Ushi—1 +by)
C=1i *C~‘z +fixCi1

01 = Og(Wox; + Uphy—1 + b,)
hy = oy xtanh(C;)

)

Equations 1 desribe how a layer of memory cells
is updated at every timestep ¢. In these equations :

e X, is the input to the memory cell layer at time ¢

o W, We, W W,,U;,Ur,U.,U, and V, are weight
matrices

® b;,by,b. and b, are bias vectors

e i; is the input gate, f; is the forget gate activation
at time ¢

e (; is the candidate value for the states of the
memory cells at time 7.

Last layer of neural network is called ouput layer.
It generates ouput , which is set of numbers from in-
terval (0,1). Every output of the output layer is then
compared to desired output, difference from desired
output is called error. Because more tones can be
played simultaneously in music and are independent
from others, error is calculated as cross-entropy (see
eq. 2). Expected output 7 is compared to actual output
y for whole output width n.

X=n

Eroral = H(txyx + (tx - 1)(1 - yx)) (2)
x=0

To find the local minimum of error function, gra-
dient descent algorithm is used, algorithm takes one
steps proportional to the negative of the gradient. Be-
cause propagating error was slow, we also use opti-
mization algorithm called back-propagation, which

was proposed by Werbos [3]

Datasets used in this paper are publiclz available at !
They are already divided into three categories: training,
validation and testing.

Music data in this work are represented as piano-
roll. Which is an old way of representing piano-notes
for self-playing pianos. Notes for piano are repre-
sented by their tones at discrete point in time. Repre-
senting notes as array of points in time is quite suitable

Uhttp://www-etud.iro.umontreal.ca/ boulanni/icm]2012

for computers. Neural networks are working with
vectors, therefore piano-roll is mapped into vector of
length 88 (88 tones on piano).

(a)

(c) (d)

Figure 1. Quantity of tones in datasets: JSBChorales
(a), MuseData (b), Nottingham (c), Piano-midi.de(d),
It is notable that the majority of tones is clustered
around the middle of the range. From the current
dataset we could deduce that people dislike too many
high or too many low notes. There seem to be some
spaces between often played tones, those are the
halftones, that are played less.

At the first step of creating neural networks, it is nec-
essary to decide how many layers are needed for given
problem. Adding more layers improve the power of
neural network, although after certain point it does
only make a little difference for huge increase in com-
puting time.

Because the input and the ouput layer represent
piano-roll at one distinctive time, they have to be set
to length of 88.

In my case I have started with two hidden LSTM
layers of width 1024 units. (See figure 2).

1024 1024

88

(=]
[=-]

Ou

=3

Input put

LSTM Dropout LSTM Dropout

Figure 2. Neural network used in this work

To assest the quality of model, we use two metrics:
loss function and accuracy function. A loss function
specifies the goal of learning by mapping parameter
settings to a scalar value specifying how bad those
parameter settings are, therefore the goal of learning is
to find a setting of the weights that minimizes the loss
function.

Accuracy is the ratio of correctly generated output
to destinated output, therefore we want to maximize
the accuracy. Mine accuracy perceives correctly gen-
erated output only if all and only correct notes have
been played. If 2 notes out of 3 are correct, acurracy
of this scenario will be 0%.

4.1 Learning progress
Every going through entire training dataset is called
an epoch. We can drastically help neural network in
learning just by increasing the number of epochs. After
the first epoch the neural network adjust only slighty.
Some tones will get tiny chance of occurence and some
will get huge chance of occurence. (See figure 3)
Adding more epochs only lineary lengthen the time
of training, but after certain number of epochs, every
new epoch will be less and less significant. Adding
more epochs led to overfitting which will be addresed
later in this paper. (See section dropout 4.2)

Epoch loss Validation accuracy Validation loss
0 9.49914 0.15373 8.75719
5 8.14762 0.19001 8.83794
40 5.98347 0.16745 11.73323

Table 1. Validation accuracy and validation loss after
certain number of epochs, validation accuracy was
even higher after only five epoch compared to fourty,
due to overfitting.

4.2 Dropout

When network learns the same set of data over and
over, it can become to inclined to this data and lose its
abillity to generalize. As a solution, dropout was pro-
posed [4]. It works on priciple of randomly dropping
out units in neural network. Each unit is dropped with
a fixed probability p independent of other units.

p Validation accuracy Validation loss

0 0.15652 15.31470
0.1 0.16025 13.05284
0.2 0.16745 11.73324
0.3 0.14942 10.64415
0.4 0.15710 10.37890
0.5 0.170504 9.49869

Table 2. Different values of dropout in LSTM
network after 40 epochs and 0.5 after 25 epochs.

Validation loss
16 T T T

15+

i Dropout 0.0

Dropout 0.1
Dropout 0.2
Dropout 0.3
Dropout 0.4
Dropout 0.5
Dropout 0.6

13+

12 +

11t

10

. L L . . | L
0 5 10 15 20 25 30 35 40
Epoch

Figure 4. Loss of neural network depending on
different values of dropout, with dropout 0.5 network
crashed after 25 epochs

Dropout have proved to be an effective way to
avoid overfitting for my case as well. (see figure 6) Af-
ter increasing dropout even more, my network stopped
working correctly, therefore I setled on dropout 0.5 at
only 25 epochs.

A trained neural network can be presented with any
note or a song to generate output according to input.

Output of neural network is a vector of length 88.
Numbers in ouput are from interval (0, 1) Where every
number is the probability of said tone to be played at
the given time. Because in a music more tones can
be played at the same time, the output of the neural
network is sampled by generating array of random
numbers of length 88. This array is then compared
to ouput of neural network, if the random number is
higher than output of nn, the tone is added to the note
at that time. This sampling have proven to create quite
listenable music.

Since neural network was learned on classicial mu-
sic, it is highly recomended to present initial sequences
of the same genre. Output from network can then be
sampled and used as new input. Doing this over and
over whole song can be generated.

Competence of neural network can be also assest
by generating notes from test dataset at any time ¢
and comparing them to subsequent notes at next frame
t + 1(See figure 5)

(a)

(b)

Figure 3. Neural network output after one epoch (a), five epochs (b) and fourty epochs (c), we can clearly see
that network learned which tones are played after first epoch, but by adding more epoch, network also learned
when exactly are tones played, depending on the previously played notes

5 ¥ ¥ 8 & 8

(a) (b)

Figure 5. Sampled neural network output (a) and
actual output (b), some simialirities might be seen,
mainly one note playing for several time units at the
end. Also it seems like that neural network sometimes
generate some notes that are not played at all and
sometimes plays too many notes at once

6. Application - NeuralPiano

Based on my work with neural networsk, I have cre-
ated compact application for generating music, called
NeuralPiano.

NeuralPiano does not compete with any profes-
sional music editing software, but just provide new
glance at possibility’s in music editing.

NeuralPiano uses two LSTM layers of width 1024
units, with 0.5 dropout layers Neural network was
trained only on 4 datasets of classicial piano music,
therefore my application will be only able to recreate
classical music.

It’s compact and executable on any platform with
python. Simple interface that looks like piano with
timestamps allows user to easily create hiw own music,
that can be instantly listened to. And above all allows
the user to generate more music.

Hf=] B3

NeuralPiano

Savel{laa' |Generalz

S LM

il

Figure 6. Alpha version of neural piano

7. Conclusions

With LSTM and enough time we have achieved even
very "human’ things like creating listenable music.

For most common usage of LSTM, forty epoch of
training was sufficient. We found dropout necessary
to avoid overfitting, with optimal dropout probability
p = 0.4, because higher value of dropout stopped the
neural network before reaching forty epochs. Using
dropout lead to result of

Small artists at home can now add something new
into their pieces, thanks to NeuralPiano.

Other music editing softwares could highly benefit
from implementing some kind of artificial inteligence
to their software.Because generation with neural net-
work is quite fast.

Acknowledgements

I would like to thank my supervisor Ing. Karel Bene$
for his help.

References

[1] Nicolas Boulanger-Lewandowski, Yoshua Bengio,
and Pascal Vincent. Modeling Temporal Depen-
dencies in High-Dimensional Sequences: Appli-
cation to Polyphonic Music Generation and Tran-
scription, 2012.

MeuralPianae Play

'

(2]

[3]

[4]

Sepp Hochreiter and Jiirgen Schmidhuber. Long
short-term memory. Neural Comput., 9(8):1735—
1780, November 1997.

Paul John Werbos. The Roots of Backpropagation:
From Ordered Derivatives to Neural Networks and
Political Forecasting. Wiley-Interscience, New
York, NY, USA, 1994.

Nitish Srivastava, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,
15(1):1929-1958, January 2014.

	Introduction
	Long Short Term Memory
	Data
	Optimizing the model
	Generating music with neural network
	Application - NeuralPiano
	Conclusions
	References

