BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Automating Test Driven Development with

Grammatical Evolution

Jan Svoboda*

Abstract

Test driven development is a widely used process of creating software products with automated
tests. In this process, developers first write tests based on given specifications and then proceed to
write as little production code as possible that passes the tests. This work focuses on automating
the second part using grammatical evolution i.e. a technique that generates programs in arbitrary
language based on the specified cost function. The proposed system is able to create simple
functions in an imperative programming language based on unit tests. Generated code contains
common constructs such as command sequences, conditional branches, and loops. The system
is demonstrated on evolving the array_filter function from tests describing its inputs and outputs.
This approach could shift the role of developers, whose work would no longer involve thinking about
implementation details. Instead, they would focus on formalizing high-level specifications.

Keywords: Grammatical Evolution — Test Driven Development — Artificial Intelligence

Supplementary Material: Code on GitHub

*xsvoboOs@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

Automated testing plays an important role in quality
assurance of software products. Its purpose is to auto-
matically verify that each version behaves according to
specifications. That leads to less time spent on manual
testing and lower number of bugs, which can signifi-
cantly reduce the cost of development and maintenance
of software.

One approach to creating software with automated
tests is the so-called test driven development. This
process starts with the developer formalizing new re-
quirements, for example, a change in current behavior
or a new feature. This is usually done by creating tests
in a testing framework of the programming language
that the production code is written in.

The next step is implementing the requirements,
which starts with the developer compiling and running
the tests. In the beginning, this usually results in a
number of compilation errors, because no production
was written at this point. The programmer then solves

all issues step-by-step by writing the code, while re-
peatedly running the test suite, until it compiles and
all tests pass.

If we automate the implementation by offloading
it to computers, software developers will have more
time to create better specifications, further improving
the software quality.

We focus on doing so with the use of grammatical
evolution. Its goal is to find a computer program that
passes all tests and behaves according to the specifi-
cation. It is shown that assertions on expected values
and values actually returned by tested programs can
be used for determining the fitness of each solution.

The system was tested on generating the imple-
mentation of the array_filter function. That requires
use of a loop, sequence of commands, and condition
— the building blocks of imperative languages. Inputs
of the system are a set of tests describing inputs and
correct outputs of the function and a subset of gram-
mar of the PHP language. Analysis of the experiments
will be based on the number of generations needed to

http://excel.fit.vutbr.cz
https://github.com/jansvoboda11/gram-php
mailto:xsvobo0s@stud.fit.vutbr.cz

evolve correct programs, the amount of time it took
and code quality of the result.

This paper introduces general principles of gram-
matical evolution in Section 1. Existing libraries and
research on automating test driven development with
grammatical evolution are mentioned in Section 2.

Section 3 and 4 are dedicated to the overview of
the proposed grammatical evolution library Gram and
its application for automating unit tests in PHP. Experi-
ments are presented and analyzed in Section 6. Results
of this work and suggestions for future improvements
are summed up in the last section of the paper.

2.1 Introduction to grammatical evolution
Grammatical evolution is an evolutionary computation
technique that combines genetic programming with
constraints-based search, where the constraints are
formulated via a context-free grammar. It can evolve
complete programs in an arbitrary language using a
variable-length integer vector [1]. The binary genotype
determines which production rules of grammar are
used to create the resulting program.

2.2 The genotype mapping process

The most commonly used notation of formal grammars
in grammatical evolution is Backus-Naur form (see
example in Listing 1).

(A) <expr> = <expr> <op> <expr> (0)
| (<expr> <op> <expr>) (1)
|

<var> (2)

+ (0)
- (1)
* (2)
/ (3)

(B) <op>

(C) <var> ::= x (0)
| 1 (1)

Listing 1. Grammar in Backus-Naur form

The genotype is used for mapping the start symbol
of grammar onto terminals by using genes selecting
an appropriate production rule with the following map-
ping function:

r =g mod R (nH

where r is the chosen production rule, g is the value
of current gene and R is the number of all possible rules
for current non-terminal.

Consider non-terminal B from Listing 1, which has
4 possible rules. If the current gene has a value of 7,
then the genotype maps to rule 3: <op> ::= "/".

2.3 The algorithm of grammatical evolution
Every run of grammatical evolution begins with creat-
ing the first generation of individuals which is seeded
either randomly or heuristically. The genotype of each
individual is mapped to a string representation of a
program in the chosen language.

The program is then evaluated and by comparing
its outputs with the desired outputs and its fitness score
is assigned. If no suitable solutions were found, the
current generation is reproduced using the crossover
and mutation operators. This process is repeated until
a viable solution is found (see Algorithm 1).

Result: individual meeting requirements
individuals = initialize();
forall individual € individuals do
program = map(individual);
results = evaluate(program);
individual.fitness = calc_fitness(results);
end
while not good_enough(best(individuals)) do
individuals = reproduce(individuals);
forall individual € individuals do
program = map(individual);
results = evaluate(program);
individual.fitness = calc_fitness(results);

end
end

result = best(individuals);
Algorithm 1: Grammatical evolution

Evolutionary algorithms have been successfully used
in combination with automated testing. Researchers
are focused either on evolving test cases for existing
software or on co-evolving both the production code
and tests.

3.1 Evolving tests for existing software
While evolving tests for existing software can have a
positive effect on code coverage [2], the research does
not demonstrate its usability in real-world scenarios.
It was shown that the evolutionary algorithm is able
to generate test-cases that the current production code
passes [3]. However, it is not clear how well the new
tests reflect the real specifications. In fact, they may be
misleading and make existing bugs in the code appear
as features.

3.2 Co-evolving production code and tests
Co-evolving production code along with automated
tests appears more pragmatic. A. Arcuri and X. Yao

were the first to propose a system that successfully
evolved a program implementation based solely on
tests [4] [5]. Their implementation used a consider-
ably large number of testing data sets. Every five
generations, the testing data were swapped to prevent
overfitting.

Although changing the testing data every few gen-
erations is generally a powerful technique, automated
tests in existing real-world code-bases usually use the
same dataset for each run. This work therefore fo-
cuses on evolving software using the standard testing
approach with static data thorough all generations.

4.1 Overview of the library

This section presents the proposed grammatical evo-
lution software Gram that I have created as a project
accompanying my bachelor thesis.

Gram is a C++ library designed with performance
and extensibility in mind. The original goal is to build
a system that solves symbolic regression. This paper
shows another possible application of evolutionary
algorithms in a more common real-life scenario.

4.2 Implemented algorithms

The initialization algorithm generates random geno-
types, as existing research [6] shows no clear benefit of
using heuristic methods such as ramped-half-and-half
initialization.

The mapping algorithm uses wrapping when the
genotype cannot be mapped to a complete program.
This happens when the algorithm reaches the end of a
genotype and non-terminals are still present in the pro-
gram. In this situation, the genotype is read again from
the beginning and the mapping process can continue.
If the genotype cannot be mapped even after several
wrapping events, the individual is assigned a very high
fitness, which reduces its probability of reproducing.

Reproduction uses the tournament selection algo-
rithm. The algorithm randomly picks a number of
individuals from the current generation and chooses
the best one for reproduction. After it has chosen two
distinct individuals, they are combined by one-point
or two-point crossover.

The crossover operators take a part of the genotype
of the first individual and substitute it for a piece of the
genotype of the second individual. Genes of individu-
als in the new generation can also undergo a random
mutation with user-defined probability.

4.3 Included tools

The library comes with a parser of grammars in Backus-
Naur form and a tool for communication with the com-
mand line.

Gram itself does not provide algorithms for evalu-
ating generated programs and calculating their fitness,
as they are dependent on the target language that is
chosen by the user.

The whole code-base is covered by automated tests,
can be compiled by both GCC and Clang and makes
use of portable CMake build system.

5.1 The target language

The target language of choice for this work is PHP
with its testing framework PhpUnit. PHP is suitable
because of its weak typing and implicit type conver-
sion. While not always desirable in real-world systems,
these properties make the language more forgiving to
semantic type-related errors that usually occur in code
generated by grammatical evolution systems.

In our experiments, we could observe that although
semantically flawed individuals usually have low fit-
ness, they might not be far from a significantly better
solution, which makes them potentially useful in future
generations.

5.2 Infrastructure for program evaluation
Given that most of the algorithms required to imple-
ment grammatical evolution are part of the Gram li-
brary, applications making use of it only need to define
the configurable parameters and implement algorithms
for evaluation of individuals and fitness calculation.

The generated program is stored to a dedicated file
on the disk. The PhpUnit tests are run through the
command line tool and load the to-be-evaluated pro-
gram. The program is then repeatedly called with sets
of predefined input parameters. The testing framework
then compares the real output of the program with the
expected values. If not the same, they are saved in an
XML log file.

After running all tests, the log file is loaded by
the grammatical evolution runner. The serialized PHP
literals are converted to native C++ objects and the sys-
tem can calculate the fitness of the generated individual
program.

5.3 Calculating fitness from test assertions

Fitness f of an evolved program p is computed with
the following equation:

f(p) =Y dist(e;,a) 2)
i=1

where ¢ is the number of assertions in all tests, e;
is the expected value and g; is the actual value the
program returned. Determining distance dist of two
variables in one assertion differs based on their type.

For numeric types, this function is used:

dist(e,a) = abs(e —a) 3)

For strings, Levenshtein distance appears to work
very well:

dist(e,a) = lev(e,a) “4)

Distance of two booleans is calculated with the
following function:

0, ife=a,
dist(e,a) = ne a. 3)
C, otherwise,
where C is a predefined constant.
For arrays, the following equation is used:

n
dist(e,a) = Zdist(ei,ai) (6)
i=1
where 7 is the number of items in arrays. In the case
of arrays with a different number of items, the shorter
array is normalized by padding with null values.

6.1 Description of desired program

The goal of our experiment is to generate the ar-
ray_filter function based on hand-written automated
tests. The generated function must pass all tests for the
experiment to be considered successful.

The first parameter of this function is an array of
elements to be filtered. The second parameter is a
lambda function that takes one argument — an element
of the array — and decides whether it should be kept in
the array or not. array_filter returns an array of ele-
ments that meet the filter requirements (see Listing 2).
The generated function should make use of it to satisfy
our specification (tests).

function array_filter(
array $input,
callable $filter

) : array;

Listing 2. Signature of the array_filter function

Table 1. Data used in tests of array_filter

Input Correct output
[] []

[-18, -5, -3, -1] T[]

[-18, -1, 3, 5] [3, 5]

[1, 20, 42] [1, 20, 42]

Table 2. Experiment parameters

Initialization Random
Genotype length 40 integers
Population size 200 individuals
Selection algorithm Tournament
Tournament size 5 individuals
Crossover operator ~ One-point
Mutation operator Integer-level

1.00

0.15

See Subsection 5.3
Fitness is 0

Crossover probability
Mutation probability
Fitness calculation
Success predicate

6.2 Parameters of grammatical evolution

The automated tests contain assertEquals calls that
check if the tested function returned the expected re-
sult.

For our test, we created a filter that passes only
positive numbers, as can be seen in Listing 3.

function (S$element) {
return Selement > 0;

}
Listing 3. The $filter lambda function used in tests

The set of input values and correct output values
is in Table 1.

The grammar we used defines a small subset of the
PHP language. It contains rules that allow for generat-
ing functions, creating sequences of commands, loops,
conditional statements, array initializations, pushing
new elements to an array, working with lambda func-
tions and returning values.

It also tries to compensate for the lack of type
semantics in grammatical evolution by separating vari-
able types into different rules, which appears to reduce
the number of semantically incorrect programs.

The grammar does not contain rules for generating
new identifiers — both array_filter parameters are
hard-coded in the grammar along with few temporary
variable names. With this measure, the system does
not spend time on evolving new identifiers. It instead
focuses of the basic control structures (commands,
loops, conditions) that are far more important for our
experiments.

For parameter configuration see Table 2.

Table 3. Stat measured in 100 runs

Generations Time [s]

Average 20.9 89.9
Median 14.5 71.0
Max 104.0 364.0
Min 0.0 8.0

100

Cumulative frequency of success in 100 runs

0 | | | | |

0 10 20 30 40 50 60
Generations

Figure 1. Cumulative frequency of success in 100
runs in generating array_filter function

6.3 Analysis of results

In this experiment, we repeated 100 independent runs
of the system with the same parameters and the system
was able to generate a viable program in all of them.

The number of generations necessary to complete
varied quite a bit across the runs: in some cases the
desired program was generated right in the first popula-
tion by the random initializer while some runs required
over 90 populations. For more measurements, see Ta-
ble 3. For cumulative frequency of success across all
runs, see Figure 1.

The result of majority of the runs looks like List-
ing 4. In some cases, the solutions contain some extra
code that does not affect the fitness. That includes
multiple array initializations after line 3 or additional
code after the return statement on line 9 (dead code).

1 <?php

2 function array_filter($input, $filter) {
3 Soutput = [];

4 foreach ($input as $item) {

5 if (sfilter(Sitem)) {

6 Soutput[] = Sitem;

7 }

8 1

9 return Soutput;

10 }

Listing 4. Evolved array_filter function

This work introduced a new grammatical evolution
library. It implements all necessary algorithms, is
easily extensible and can be used in various use-cases.

We used it on the problem of automating the test
driven development. The system was able to generate
complete program using only automated tests and a
small subset of the target language — PHP.

The process of generating a program took on aver-
age 90 seconds, required 21 generations and produced
code with only a small amount of dead code.

This system can be further improved by using
static analysis tools to modify and reduce the grammar
in run-time, rather than beforehand.

I"d like to thank my supervisor prof. Luk4§ Sekanina
for his valuable advice and friendly approach.

[1] M. O’Neil and C. Ryan. Grammatical Evolution.
Kluwer Academic Publishers, 2003.

[2] S. Wappler and J. Wegener. Evolutionary unit
testing of object-oriented software using strongly-
typed genetic programming. In GECCO 2006:
Proceedings of the 8th annual conference on Ge-
netic and evolutionary computation, 2006.

[3] N. Gupta and M. Rohil. Using genetic algorithm
for unit testing of object oriented software. Inter-
national Journal of Simulation Systems, Science
& Technology, 10(3), 2009.

[4] A. Arcuri and X. Yao. Coevolving programs and
unit tests from their specification. In Proceedings
of ASE-2007: The 22th IEEE Conference on Auto-
mated Software Engineering, 2007.

[5] A. Arcuri and X. Yao. A novel co-evolutionary
approach to automatic software bug fixing. In Pro-
ceedings of 2008 IEEE Congress on Evolutionary
Computation, 2008.

[6] M. Fenton, J. McDermott, D. Fagan, S. Forsten-
lechner, M. O’Neill, and E. Hemberg. Ponyge?2.:
Grammatical evolution in python. ArXiv e-prints,
2017.

	Introduction
	Grammatical evolution
	Existing solutions
	New grammatical evolution library
	Evolving programs in PHP using automated tests
	Experiment
	Conclusion
	References

