
http://excel.fit.vutbr.cz

Angie: A Framework for Static Analysis over
Symbolic Memory Graphs and Beyond
Michal Kotoun*, Michal Charvát**

Abstract
Creating a software verification tool is a complex task: Source parsing, instruction representation,
value abstraction, user interface, . . . the analysis itself. Therefore, it was decided to create a static
analysis framework to free analysis implementers of all the unnecessary wheel reinventing.
We propose a general design of the framework with a primary focus on usability, having a work-in-
progress implementation of the framework and model analysis based on Symbolic Memory Graphs.
The programming language of choice is C++ with LLVM serving as the front-end for parsing the
source code of analysed program.
We aim to surpass Predator implementation of Symbolic Memory Graphs in the means of abstraction
precision and to prove usefulness of this framework, with hopes that it will attract more people to
work on static analysis and verification.

Keywords: Static Analysis Framework — Verification — C — C++ — LLVM — Predator — Symbolic
Memory Graphs — Abstract Interpretation

Supplementary Material: Code Repository

*xkotou04@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology
**xcharv16@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

As the amount of software critically influencing our
lives gradually increases, so rises the importance of
different methods for checking the software for flaws.
There are several well-known historical examples of
what a software error can cause from the areas of space
missions or pharmacy, and companies in such fields
are still searching for the ultimate verification and bug-
hunting tools. In this paper, out of the broad range of
approaches that such tools can be based on, we are
particularly interested in static analysis methods.

A static analyser for languages like C is a complex
piece of software. It includes much more than just
the analysis algorithms themselves: it must be able to
compile all the details of the source language, provide
a viable abstraction/simplification over its structures
and commands into some intermediate representation,
provide infrastructure for combining different analyses,
and be able to report results of the analysis.

Our work is inspired by a verifier for low-level C

programs with dynamic linked data structures called
Predator 1:

• It is designed as a compiler plug-in.
• It is built on top of the Code Listener frame-

work 2 — an interface to access an intermediate
representation of program from the GNU GCC
(default) or LLVM clang [1]

• Its verification loop is based on abstract interpre-
tation instantiated by Symbolic Memory Graphs
[2]

Predator is quite efficient and can handle many com-
plex program constructions. It is a multiple-time win-
ner [3, 4, 5] of the heap memory and memory safety
categories in SV-COMP3 despite not handling recur-

1http://www.fit.vutbr.cz/research/groups/
verifit/tools/predator/

2http://www.fit.vutbr.cz/research/groups/
verifit/tools/code-listener/

3International Competition on Software Verification,
https://sv-comp.sosy-lab.org

http://excel.fit.vutbr.cz
https://github.com/VeriFIT/angie/tree/develop/
mailto:xkotou04@stud.fit.vutbr.cz
mailto:xcharv16@stud.fit.vutbr.cz
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
https://sv-comp.sosy-lab.org

sion, modular programs and integers above specified
limit.

We – as the members of VeriFIT group – intends
to build on Predator’s success and push its usability
border even further. However, this is not so easy:

First, the architecture of Predator was written to
a large degree by a single developer who did not think
much of later extensions of the tool and who left the
team, and hence it is difficult to even understand all
details of the tool. Moreover, Predator (and also the
related tool Forester that shares with Predator the Code
Listener infrastructure), is very optimized and any
changes to it pose a great challenge (and use to pose it
even to its original author).

Of course, one can start from the scratch – and do
this every time a new analysis is needed. However,
taking into account what has already been said above
about what all needs to be included into a reasonable
tool, the developer of the new analysis will be forced to
reinvent the wheel by creating a waste number of base
modules, like e.g. front-ends, intermediate represen-
tation, etc. Therefore, it was decided that a complete
re-implementation of Predator is needed, but it should
be done in such a way that it should be easy for new
developers to join its development and/or implement
a new analysis within the created infrastructure.

Therefore we need software that:
• simplifies creating new analyses as much as pos-

sible,
• handles abstracting instructions from source lan-

guage into some reasonable intermediate form,
• allows for composing analyses,
• implements common parts of most analyses as

built-in components.
This fulfils the definition of a framework. In this paper,
we describe our work on such a framework that we call
Angie and we hope that it will make implementation
of new program analysis for researchers smooth and
simple. The initial scope for supported input languages
should be C with possible extension for C++ later.

There are of course some related works devoted to
development of similar frameworks. Let us name the
most well-known of them:

• CPAchecker4 is a platform for software verifi-
cation written in Java and based on the idea
of Configurable Program Analysis (CPA). It al-
lows for composition of analysis and one of
the supported analyses is even a simplified ver-
sion of the analysis implemented in Predator

4https://cpachecker.sosy-lab.org/

(so far without a support for abstraction). Un-
fortunately, CPAchecker forces developers of
the analyses to be used within it to accept the
approach of CPA which may sometimes be re-
stricting.

• Ultimate5 is also written in Java, uses a dialect
of Boogie6 for intermediate representation, and
concentrates on analyses implemented in
an automata-theoretic way. The latter is again
somewhat restricting.

• Frama-C 7 is one of the most known plug-in
based platform for C analysers, it operates on
CIL—the C Intermediate Language8 and is writ-
ten in OCaml as many others research verifica-
tion tools. Here, the use of CIL is not much
aligned with the latest development in the world
of major compilers such as those of LLVM9

family.

In our infrastructure, we would like to rely on a ma-
jor compiler infrastructure, and we would like to be
as little restricting in terms of the kind of analyses
supported as possible.

We will explain later that we decided to use LLVM
for the intermediate representation of programs, so we
would like to mention two further recent tools that also
use the LLVM tool-chain as their front-end and also
compete in SV-COMP:

• Symbiotic 10 is a verifier based on symbolic exe-
cution written in C++.

• DiVinE 11 is also written in C++, focuses on
verification of concurrent programs, features
a virtual machine interpreting the LLVM bitcode,
debugger displaying the program in LLVM as-
sembly language and others.

None of these tools, however, can be viewed as an
infrastructure.

We designed Angie to be modular and not restric-
tive from the point of view of the way the analyses
should be implemented in it. It should allow combined
analyses to be implemented in it. However, we do not
intend to provide any super-generic means for com-
munication among the analyses implemented in the

5http://monteverdi.informatik.
uni-freiburg.de/ultimate/

6https://github.com/boogie-org/boogie
7https://frama-c.com/
8https://people.eecs.berkeley.edu/

˜necula/cil/
9http://llvm.org/

10https://github.com/staticafi/symbiotic/
11https://divine.fi.muni.cz/

https://cpachecker.sosy-lab.org/
http://monteverdi.informatik.uni-freiburg.de/ultimate/
http://monteverdi.informatik.uni-freiburg.de/ultimate/
https://github.com/boogie-org/boogie
https://frama-c.com/
https://people.eecs.berkeley.edu/~necula/cil/
https://people.eecs.berkeley.edu/~necula/cil/
http://llvm.org/
https://github.com/staticafi/symbiotic/
https://divine.fi.muni.cz/

framework. We let it on the developers of the anal-
yses to combine them. Intuitively, a combined anal-
ysis should be added as a new analysis, but creating
it should be relatively easy as the framework should
ease creation of any analysis in general by providing
the front-end, intermediate representation, as well as
some light-weight communication means among the
analysis (that can but need not be used by developers
of combined analyses).

We chose LLVM to be the fronted since the LLVM
tool-chain has a stable development and provides us
with a way to support many input languages. The first
and model analysis we are implementing in Angie
is a shape analysis based on the Symbolic Memory
Graphs originally introduced in Predator, to which we
are making some improvements allowing for a more
precise abstraction.

We have chosen C++ to be the implementation
language because it is one of the most used ones and
because LLVM itself is implemented in it. We are
aware of the fact, that C++ might not be the easiest
language to use when implementing a new analysis,
but we hope this choice will prove to be acceptable
as students and young researchers with an existing
programming background should be be reasonably
familiar with the concepts we use.

We have already successfully created an LLVM
front-end adapter which wraps the ever-changing
LLVM API, defined an interface for combining ab-
stract value domains, and implemented two different
versions of the value domain module. The design of
Angie is now fairly stable and reflects many hours of
discussions regarding the overall design of the frame-
work.

2. Symbolic Memory Graphs
The following chapter introduces basics of SMGs de-
scribed in [2].

2.1 Nodes and edges description
The idea behind Symbolic Memory Graphs is to ex-
press the memory configuration of a program as an
oriented graph of individual memory areas with a cer-
tain degree of abstraction. This representation is used
during abstract interpretation.

SMGs consists of two kinds of nodes: objects and
values, where objects are further divided into regions
and list segments.

Regions simply represents the individual memory
areas while list segments are more abstract: each rep-
resent a part – uninterrupted segment – of single- or
double-linked list.

There are also two types of edges: has-value and
points-to edges.

2.2 Basics about operations
The first kind of operation is reinterpretation: data
read, write, and join reinterpretation. On the one hand,
because SMGs allow fields of single object to overlap
(even to the degree they are different only in type) it is
possible to create multiple views of the same memory
area - hence the read reinterpretation. On the other
hand, when writing to a field which overlaps with other
fields, we need to reflect these changes to memory –
that is what write reinterpretation is for.

SMGs are created ”on-the-fly” during the analysis
and the abstraction operation is triggered on certain
conditions. Whenever this occurs, analysis tries to
identify group of regions as - for example - single-
linked list and converts appropriate regions to list-
segment(s).

Abstraction and reinterpretation operations over
SMGs are specified using a custom join operator. Join
operator is the core of the entire abstraction: it is a
binary operator, taking two SMGs as an input, out-
putting their possible join. Its primary usage is to
lower the number of SMGs for every possible pro-
gram state by merging both input SMG into (probably
more general) one with restrictions on information loss
in place. Details of its formal definition are beyond
the scope of this work.

2.3 Example

Figure 1. Standard memory view [top] and
Abstract–SMG view [bottom]

Figure 1 shows and example of SMG correspond-
ing to linux-like double linked list. The list consists of
head and no-less than 2 elements - first and last. Head
of the list is represented by a region in the left part of
the graph and has two values of pointer type, at offests
0 and size(ptr). Both corresponding points-to edges
are pointing to the useful part of the list represented
by 2+ DLS, one to the first and the second to the last
element.

3. Important parts of Angie design

3.1 Main algorithm – the verification loop
All static program verifiers use some sort of program
representation to perform their analysis. Angie uses
LLVM IR (intermediate representation) as oppose to
the predecessor tool Predator which was analysing
program code in a form of GIMPL instructions. The
LLVM has been chosen because of its strenghts— it al-
lows for analysis of programs written in all clang com-
patible languages, it is easy to modify, filter, optimize
and has strong support from development community.

The verification loop starts by loading LLVM IR
code and initializing the analysis domain. The internal
IR code can be modified/filtered to simplify the code
analysis.

Angie uses the IR code to build simplified control-
flow graph (CFG) whose nodes are our custom op-
erations with arguments representing semantics of
the analysed program.

The result of the initialization part of the verifica-
tion loop is the root node of the CFG (entry point) and
a zero state (initialized constants etc.)

The program analysis is a form of abstract inter-
pretation, Angie walks the control-flow graph and per-
forms the abstract operations resulting in a new state
(in case of SMGs: memory representation of the cur-
rent state of the program—SMG and Values). When
the analyser encounters CFG node it has already vis-
ited, to prevent program state explosion a join opera-
tion over the old and a new state might be executed.
Walking the control-flow graph is achieved by a con-
tainer (either queue or list) containing pairs of CFG
node and a last program state. At the begining of
the analysis the root CFG node with the zero state is
enqueued into the Worklist then in every step of the
analysis an operation is executed from the top of the
Worklist and a following node(s) with the new state
is placed back to the Worklist. This is repeated in
a loop until the Worklist is empty (from here the name
verificatoin loop).

The verification loop is expected to be more gener-
alized in the future to support other techniques beside
abstract interpretation.

3.2 Analysis domain primitive
Angie models the analysis domain as an object repre-
senting a abstract program state which can be cloned
and a set of free operations able to modify that state.
This approach provides valuable flexibility towards
possibility of creating new custom operations for di-
agnostic needs, forcing a specific action etc. without
the necessity of radically alternating the main veri-

fication loop. This concept also allows for relative
simple exchange/extension of the program analysis.
See description of Figure 2.

Figure 2. General concept of abstract analysis domain

3.3 Abstract value representation domain
An abstract value domain is a set of all possible values
an abstract value can represent. The domain allows
to share information with other domains effectively
encapsulating internal representation of the abstract
values and operations with them.

Almost every program analysis requires an ab-
stract domain of some kind so the Angie framework
already contains an abstract value domain implemen-
tation which provides simpler analysis development,
however the framework does not tie developers hand
behind his back and allows for the abstract value do-
main to be switched for another one.

The abstract domain implemented in the Angie
framework supports constant integer and partly inter-
val abstraction with arithmetic operations +, −, ∗, /,
%, bit operations shift, or, xor, and, not, comparisons
==, ! = ,< ,> between two abstract values, creat-
ing constants and unknown values, bit truncation and
extensions. Logical operations and, not, or are not im-
plemented since the LLVM IR code does not use them
anyway. See Figure 3 for the current abstract domain
interface.

4. The implementation
Angie is currently hosted on GitHub with continu-
ous integration hooks and we provide it under the
GNU LGPL licence v3+. The repository contains
dependency and install description, has a stable master
branch and unstable feature and develop branches.

All currently used third party libraries are header-
only and licence compatible. One of those, Range-
v312, is worth mentioning - it is based on the current
version of Ranges and Concepts drafts for Technical
Specifications13. It allows non-owning selection, trans-

12https://github.com/ericniebler/range-v3
13TS are papers for features that are proposed to be merged in

one of the next ISO C++ standards.

https://github.com/ericniebler/range-v3

Figure 3. Abstract value domain interface

formation and also generator views to be constructed
as single objects using functional-like syntax, enabling
easy-to read constructs and re-use of algorithms sim-
ilar to <functional>14. The project is targeting C++
14 and is tested with a minimum of GCC 4.9 / MSVC
2015.

Currently implemented features are:
• Direct support for most LLVM IR critical con-

structs, rest can be simplified via pre-run trans-
formation passes

• Symbolic Memory Graphs without abstraction
• Basic intrinsic functions for analysis and debug-

ging
In progress:
• Basic doubly linked list abstraction for SMGs
• Simple analysis implementation example and

tutorial

5. Conclusions
Nowadays the world has a high demand for a software
whose correctness and proper operation is a question
of life and death. This being a fact, a program verifi-
cation methods have become a very important area of
research.

To simplify the conditions for developers of new
program analysers, the VeriFIT group is working on
a framework, that has the potential to be the bread and
water for students and enthusiastic researchers, allow-
ing them to skip most of the waste code concerning
loading the program into its intermediate representa-
tion, boilerplate code around the main verification loop

14A part of C++ standard library containing standard algorithm
functions working with iterators

and abstract value domain model and fully focus on
what is really important – the science of creating a new
analyser.

We are going to continue working on the imple-
mentation of Symbolic Memory Graphs analysis, refine
the code of framework itself to more closely match the
proposed design and provide proper documentation
and examples.

Moreover, in the future, we hope to provide an in-
terface to implement analysis in languages different
than C++, get more people to maintain the project and
even more people to create analysis / verification tools
with it.

Acknowledgements

We would like to thank our fellow VeriFIT members:
namely the project supervisor Tomáš Vojnar and the
co-supervisor Petr Peringer for their help and coop-
eration on this project, also Petr Muller and Viktor
Malı́k for their work on the previous halted attempt on
the new SMG C++ implementation, and last but not
least Veronika Šoková for her initial research on LLVM
IR and its simplification transformations [6] .

References

[1] Veronika Šoková. Vývoj LLVM adaptéru
pro infrastrukturu Code Listener. Bakalářská
práce, Vysoké učenı́ technické v Brně, Fakulta
informačnı́ch technologiı́, 2013. Details:
http://www.fit.vutbr.cz/study/DP/
BP.php?id=15896.

[2] K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise
Verification of Low-Level List Manipulation. In
Proc. of SAS’13, LNCS 7935, pages 214–237,
Springer, 2013.

[3] P. Muller, P. Peringer, and T. Vojnar. Predator
Hunting Party (Competition Contribution). In
Proc. of TACAS’15 as a competition contribution
within SV-COMP’15, LNCS 9035, pages 443–446,
Springer, 2015.

[4] M. Kotoun, P. Peringer, Veronika Šoková, and
T. Vojnar. Optimized PredatorHP and the
SV-COMP Heap and Memory Safety Benchmark
(Competition Contribution). In Proc. of TACAS’16
as a competition contribution within SV-
COMP’16, LNCS 9636, pages 942–945, Springer,
2016. An extended version is available here:
http://www.fit.vutbr.cz/˜vojnar/
Publications/predators-svcomp-16.
pdf.

http://www.fit.vutbr.cz/study/DP/BP.php?id=15896
http://www.fit.vutbr.cz/study/DP/BP.php?id=15896
http://www.fit.vutbr.cz/~vojnar/Publications/predators-svcomp-16.pdf
http://www.fit.vutbr.cz/~vojnar/Publications/predators-svcomp-16.pdf
http://www.fit.vutbr.cz/~vojnar/Publications/predators-svcomp-16.pdf

[5] D. Beyer. Reliable and Reproducible Competition
Results with BenchExec and Witnesses (Report on
SV-COMP 2016). Proc. TACAS, Springer, 2016.

[6] Veronika Šoková. Analýza práce s dy-
namickými datovými strukturami v c pro-
gramech. Master’s thesis, Vysoké učenı́ tech-
nické v Brně, Fakulta informačnı́ch technologiı́,
2015. Details: http://www.fit.vutbr.
cz/study/DP/DP.php?id=18790.

http://www.fit.vutbr.cz/study/DP/DP.php?id=18790
http://www.fit.vutbr.cz/study/DP/DP.php?id=18790

	Introduction
	Symbolic Memory Graphs
	Important parts of Angie design
	The implementation
	Conclusions
	References

