
http://excel.fit.vutbr.cz

DNS RESOLVER TESTING
Filip Široký*

Abstract
This paper describes automation of creating scenarios for Deckard, which is DNS resolver testing
tool. The scenarios are based on real traffic between a web browser and a web page gathered
when the web browser loads that page. Captured traffic is then supplemented with queries that
resolvers might require with query minimization on and off. The outcome should provide repeatable
conditions same as live environment changes. It is due to things like IP address rotation, different
content on servers authoritative for the same zone, content modification and so on. Also, no query
should remain unanswered. As for other usages, having a response from the traffic of the previous
version of the resolver leads to being able to detect changes in behavior based on the same data
between two versions, and discovering potential disability to resolve a web page caused by a bug.
As well as creating scenarios by hand is a long and hard process and automation could increase
the code coverage. It might take some time to achieve satisfying universality of the tool as there is
a large number of different ways to store DNS content.

Keywords: DNS — Knot Resolver — test automation

Supplementary Material: N/A

*xsirok08@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Domain Name System (DNS) is one of the most im-
portant services on the Internet. If it stopped working,
a lot of users would be affected as it is used by many
other online services and protocols (FTP, HTTP, SIP).

DNS records are defined loosely and the infrastruc-
ture of name servers can be set up in different ways.
This allows an inconsistency between servers expected
to have the same content and other issues with resolu-
tion. Also IP rotation, ever-changing content, localiza-
tion and cloud services contribute to the unpredictable
environment. For testing, we need deterministic and
repeatable conditions.

To create the desirable environment, I will use
Deckard and its scenarios. It is a testing tool we use
at CZ.NIC labs to test our implementation of a DNS
resolver. Knot Resolver is still in development. The
changes vary from implementation of new features to
refactoring the old code. Every change of any size
might introduce a new bug. That bug might change
the way resolver responds in certain situations. Hand-
crafted tests cover very little and might not uncover

this bug.

The goal of this thesis is to create a tool to auto-
mate creating scenarios and extend the set of scenarios
we currently have. Unlike handcrafted scenarios, gen-
erated scenarios should compare different version of
a DNS resolver implementation or even different im-
plementations. Creating scenarios manually, which is
not an easy task and takes hours, might be replaced by
generating them if we have the DNS servers with the
desired use case. Also by using a list of queries that
are required to open a web page gives us an opportu-
nity to include content commonly used by users on the
internet. This could prevent issues that would affect
many people and provide more code coverage.

When the user (or selenium script) enters a do-
main of a web page the browser asks the DNS resolver
to resolve the IP for that domain. Then the browser
loads the page content from the server whose IP he got
and processes the content. At this point, the browser
would finish opening the simple page. However, a lot
of pages use content on different servers. Examples
are styles, scripts, images, advertisements, etc. For

http://excel.fit.vutbr.cz
mailto:xsirok08@fit.vutbr.cz


example, a bootstrap style sheet would cause querying
maxcdn.bootstrapcdn.com. After processing
all web page dependencies, then the page loaded suc-
cessfully. [1]

Styles and scripts should cause the same queries
every time. Advertisements and other content, such
as applications, cause that only 13 out of 50 most
visited pages have a persistent list of queries for re-
peated capture (the list is taken from top-1m.csv in
response differences/data in [2]). 7 of them produce a
different list for PC and mobile version. The average
number of extra queries is 16. These numbers come
from capturing the traffic of Firefox, Chrome, Chrome
for IOS and Chrome for Android with Bind, Unbound
and Knot Resolver. Each combination of resolver and
browser was captured five times.

2. Used Tools
Automated testing uses several tools to achieve its
goals. For creating scenarios, we use Docker and Sele-
nium. The scenarios are used by Deckard.

Selenium
Selenium is a tool for automating browser testing. Se-
lenium supports many browsers from which Chrome
and Firefox are the most important as they cover over
half of the market and are available for Linux. Chrome
also allows mobile browser version simulation. If load-
ing a page is not sufficient, it is easy to extend the
script for going through the page to get more of its
DNS traffic. [3]

Docker
Docker is software container platform useful for cap-
turing DNS traffic with tcpdump inside. A separated
network interface allows easy filtering the required traf-
fic. Docker also comes with selenium images making
Selenium easy to use. [4]

Deckard
Deckard is a tool made and used by CZ.NIC labs for
testing a DNS software in a controlled and stable envi-
ronment. Deckard is designed to ensure reproducible
tests for DNS resolvers. At the time of writing this
document, Deckard supports Knot Resolver, Unbound,
and PowerDNS specifically by scripts testing them by
Deckard.

Deckard tests the resolver by playing a scenario
(More about scenarios in subsection 2.3.1). To achieve
deterministic behavior, Deckard requires all responses,
the resolver might ask, to be in the scenario. If any-
thing is missing, or the resolvers answer doesn’t match
the expected answer, the test will fail.

Deckard provides a way to simulate changing record
- ranges. Deckard also supports generic answers to
multiple queries by using different match values and
adjusting answers from the server to fit the ID, ques-
tion, etc. This comes in handy, especially when we
need a delegation of a domain with many subdomains.
So, instead of having multiple entries, each having the
same delegation, you get only one generic.

Scenario
Scenarios comprise two parts (steps and ranges). Steps
are a sequence of pairs. The first query of the pair is a
question Deckard asks the resolver. The second query
is a response Deckard expects. Each range represents
one or more servers and contains responses to the
questions the server can answer.

STEP ID QUERY and STEP ID CHECK ANSWER
define how to use the entries of following DNS queries.
Each step has also ID which defines the order of the
steps. Queries have adjusted format inside the entry
block. Flags are in their text representation after RE-
PLY keyword. RRSETs are placed after a line marking
which section they belong to (for example SECTION
ANSWER).

; send query to the resolver
STEP 1 QUERY
ENTRY BEGIN ; query to be send
REPLY RD
SECTION QUESTION
www.google.com. IN A
ENTRY END

; compare the answer with this entry
STEP 2 CHECK ANSWER
ENTRY BEGIN
MATCH all ; all fields must match
REPLY QR RD RA NOERROR
SECTION QUESTION
www.google.com. IN A
SECTION ANSWER
www.google.com. 300 IN A 1.2.3.4
SECTION AUTHORITY
SECTION ADDITIONAL
ENTRY END

MATCH field defines which parts of the query
have to be the same in the response resolver returned.
The entry may be required to match in multiple ele-
ments. The elements can be parts of the query or, for
example, sub-domain (instead of one query name, sub-
domains to that query are accepted as well), all (the
whole query must match), etc.

maxcdn.bootstrapcdn.com


Resolver
Deckard

1. STEP Query

DNS Server 
Deckard Range

2. resolution queries

3. STEP Check Answer

Figure 1. One Deckard step comunication

Range defines a range of ID’s for which its content
is visible. In the example below, it would be for IDs
up to 1000. Also, IPs that should respond with the
content inside the range.

RANGE BEGIN 0 1000
ADDRESS 216.239.34.10
ADDRESS 2001:4860:4802:32::a

ENTRY BEGIN
MATCH qname qtype
ADJUST copy id
REPLY QR AA RD NOERROR
SECTION QUESTION
www.google.com. IN A
SECTION ANSWER
www.google.com. 300 IN A 1.2.3.4
ENTRY END

RANGE END

Entries in ranges contain an extra field - ADJUST -
which defines fields that should be replaced by those in
the question query. It can be one of two options. One
is a copy id which copies query id and query domain
name. The other one is a copy query and copies the
whole question section.

The figure 1 depicts communication between Deckard
and the tested resolver which is described below.

First, Deckard sends the first query defined in steps
from the scenario to the tested resolver. When the
resolver attempts to communicate with any server,
Deckard intercepts the communication and looks for a
valid response in scenarios ranges. If we find a match-
ing answer, the query is returned. If no answer matches
Deckard doesn’t respond.

When resolver comes up with an answer, Deckard
compares it to the next step. If the response doesn’t
match the step, the test failed, else Deckard proceeds
with the next pair of steps. If all steps are successful
and Deckard answered all queries, the test passed.

[5]

3. Creating scenarios

The first step of creating scenarios from DNS traffic
of a web browser is to capture the traffic. Selenium
provides docker images with browsers and their depen-
dencies. Using Selenium’s images has several benefits.
There are no queries to the resolver from different ap-
plications. For every capture, we build a new container
from the image to avoid having the browser or resolver
cache from the previous capture. To capture the traffic,
we need to add programs and packages of our own
such as the resolver, and tcpdump. Once we have built
our custom image, we can capture the traffic. The
process is described below and in a figure 2.

Once everything is ready, we can open the browser
using Selenium and open the page we want the sce-
nario to be based on. Selenium has a significant advan-
tage as the test waits for the opened page to load before
the script continues. When Selenium script ends, we
have to stop tcpdump.

Now we have PCAP with queries between a browser
and a resolver, and the resolver and other DNS servers.
I experimented with two approaches to create scenar-
ios. Both use the browser-resolver traffic to generate
scenario steps. However, we can distinguish them by
the process of including all necessary answers.

The first method lies in parsing the traffic between
the resolver and other DNS servers and creating all
required answers from it. Therefore, we need none
additional requests and internet connection. However,
we might experience issues with this method using
DNSSEC as we cannot fake signatures. Also, the
data in the scenario are more artificial than in the sec-
ond method. The benefit would be in the resolvers
responses being valid as IP rotation won’t affect the
content.

The second method doesn’t use the traffic between
the resolver and other DNS servers at all. We could
use it to check if all queries from PCAP are present in
the scenario, but that is not essential to the process. In
this method, we resolve each domain (even those that
are in the answer) name label-by-label (using query
minimization) until we get the result. By keeping an
eye on zone cuts, we can also optimize the delegations.
When the response has a delegation to a zone, we only
need a subdomain to match, not full query name. With
this method, testing DNSSEC poses no problem as
well (for every record we can include the signature
if it exists). Also, the scenario will be closer to the
real environment than the one from the first method.
However, here we depend on the name servers. If
the servers are not accessible, we cannot create the
scenario. Also, IP rotation can cause different IP’s



Docker container
Selenium

Client Browser

root nameserver

Resolver

youtube x.y.z.1

1. https://youtube.com
2. youtube.com IN A

9. youtube.com IN A x.y.z.1

10 . http

com nameserver

youtube nameserver

3. youtube.com IN
 A

4. com IN
 NS com nameserver

5. youtube.com IN A

6. youtube.com IN NS youtube nameserer

7. youtube.com IN A8. youtube.com IN A x.y.z.1

11. Other queries acqurired from http data

Pcap

other servers

12 . http for other servers

Figure 2. Traffic capture diagram for a web page

being in the scenarios ranges than in the steps. I solved
this issue by replacing the record in the step by records
in ranges.

To test DNSSEC, I implemented the second method.
Although I have even the first method to some extent
implemented, not that universal, and it is harder to
create passing scenarios. The current implementation
of the second method creates scenarios that pass with
query minimization both on and off. Also, scenarios
pass for every resolver implementation supported by
Deckard. However, not every web page results in a
scenario. There are still problematic records I have
to solve. About 40 out of 50 scenarios were created
successfully from top 50 domains from top-1m.csv in
response differences/data in [2].

Amazon’s cloud service used, for instance, by
Mozilla’s services.mozilla.com. is a good
example of records problematic for the first approach.

QUESTION SECTION:

localization.services.mozilla.com. IN A

AUTHORITY SECTION:

services.mozilla.com. IN NS ns-679.awsdns-20.net.

services.mozilla.com. IN NS ns-258.awsdns-32.com.

services.mozilla.com. IN NS ns-1655.awsdns-14.co.uk.

services.mozilla.com. IN NS ns-1471.awsdns-55.org.

The resolver is delegated to four name servers with
domain names in a different top-level domain. As a
result, this creates several routes for a resolver to take
and might cause nondeterministic behavior. However,
we cannot bypass this issue as using DNSSEC requires
signatures for validating the domain names of the name
servers.

Servers in a delegation need to be reduced to one,
for the scenario to be deterministic. We can achieve it
by sorting the servers into groups and keeping only one
server per group. This would be straightforward if the
RRSET was consistent and IPs unique for each name
server domain name. However, that is not the case
with many name servers such as a cloud DNS and a
larger DNS server,... For instance, we might get name
servers with a domain in a different zone, different
RRSETS for the same sub-domain, a different name
server having the same IP address, etc.

Look at digicert.com. and its authoritative
name servers for instance. The delegation contains
two groups of servers under a different domain and
responding with different RRSET.

Response from name server with .com zone:
QUESTION SECTION:

digicert.com. IN NS

AUTHORITY SECTION:

digicert.com. IN NS ns1.p03.dynect.net.

digicert.com. IN NS ns2.p03.dynect.net.

digicert.com. IN NS ns3.p03.dynect.net.

digicert.com. IN NS ns4.p03.dynect.net.

digicert.com. IN NS ns11.dnsmadeeasy.com.

digicert.com. IN NS ns12.dnsmadeeasy.com.

digicert.com. IN NS ns13.dnsmadeeasy.com.



Response from ns11.dnsmadeeasy.com.
QUESTION SECTION:

digicert.com. IN NS

AUTHORITY SECTION:

digicert.com. IN NS ns10.dnsmadeeasy.com.

digicert.com. IN NS ns11.dnsmadeeasy.com.

digicert.com. IN NS ns12.dnsmadeeasy.com.

digicert.com. IN NS ns13.dnsmadeeasy.com.

digicert.com. IN NS ns14.dnsmadeeasy.com.

digicert.com. IN NS ns15.dnsmadeeasy.com.

I only used one approach to reducing servers to
one. Current implementation splits name servers into
several groups based on the RRSET content intersec-
tion. First, one server in the group responds to queries
needed in the scenario. Then the content is merged.

I expect I will encounter more problematic records.

4. Conclusions
Generated scenarios allow for testing resolver imple-
mentations supported by Deckard even with query
minimization and DNSSEC on real data. With some
exceptions, they are deterministic and thus valid for
testing.

Automation of DNS resolution is not simple. It re-
quires adjustments based on finding records that cause
issues. Some of them weren’t solved yet and some
solutions might need revisiting. Therefore, we cannot
turn every domain into a scenario yet. However, even
limited usability is valuable.

Acknowledgements

I would like to thank my colleague Petr Špaček from
CZ.NIC for his help with Deckard and DNS and to my
supervisor Matěj Grégr for his help with the written
part.

References
[1] Bootstrap. Bootstrap toolkit for developing HTML,

CSS and JS. https://getbootstrap.com,
2017. [Online; visited 15.01.2018].

[2] CZ.NIC. Resolver benchmarking.
https://gitlab.labs.nic.cz/
knot/resolver-benchmarking/tree/
master/, 2017. [Online; visited 22.01.2018].

[3] Selenium. https://www.seleniumhq.
org/, 2018. [Online; visited 01.04.2018].

[4] Docker Inc. Docker. https://www.docker.
com/, 2018. [Online; visited 01.04.2018].

[5] CZ.NIC. Deckard. https://gitlab.labs.
nic.cz/knot/deckard, 2017. [Online; vis-
ited 23.01.2018].

https://getbootstrap.com
https://gitlab.labs.nic.cz/knot/resolver-benchmarking/tree/master/
https://gitlab.labs.nic.cz/knot/resolver-benchmarking/tree/master/
https://gitlab.labs.nic.cz/knot/resolver-benchmarking/tree/master/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://www.docker.com/
https://www.docker.com/
https://gitlab.labs.nic.cz/knot/deckard
https://gitlab.labs.nic.cz/knot/deckard

	Introduction
	Used Tools
	Creating scenarios
	Conclusions
	References

