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Insertion of 2D Graphics into a Scene Captured by
a Stationary Camera
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Abstract
Augmented reality visualizes additional information in real-world environment. Main goal is achieving
natural looking of the inserted 2D graphics in a scene captured by a stationary camera with possibility
of real time processing. Although several methods tackled foreground segmentation problem, many
of them are not robust enough on diverse datasets. Modified background subtraction algorithm ViBe
yields best visual results, but because of the nature of binary mask, edges of the segmented objects
are coarse. In order to smooth edges, Global Sampling Matting is performed, this refinement greatly
increased the perceptual quality of segmentation. Considering that the shadows are not classified
by ViBe, artifacts were occurring after insertion of segmented objects on top of the graphics.
This was solved by the proposed shadow segmentation, which was achieved by comparing the
differences between brightness and gradients of the background model and the current frame. To
remove plastic look of the inserted graphics, texture propagation has been proposed, that considers
the local and mean brightness of the background. Segmentation algorithms and image matting
algorithms are tested on various datasets. Resulted pipeline is demonstrated on a dataset of
videos.
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1. Introduction

In recent years an augmented reality has been broadly
used in various applications such as video games, de-
signing or sport broadcasting. Existing algorithms
[1, 2] addressing this problem have been mainly fo-
cused on stitching graphics to the ground, because of
camera movement. Natural look of the inserted graph-
ics is not discussed at all. Thus inserted graphics look
too plastic. Therefore this paper is focused on natu-

Figure 1. (b) Example of the result obtained from
the proposed pipeline. (a) Result without texture
propagation and foreground segmentation.

ral look of the inserted virtual 2D graphics, resulting
in graphics that give the impression, that it has been
painted on the surface of the ground (Figure 1).

With increasing resolution and color accuracy, many
works are focused towards better accuracy, unfortu-
nately at the expense of processing time. Thus, these
methods can not be used in the proposed pipeline, since
it aims to be possible of real time processing. Another
criterion is keeping the integrity of the segmented ob-
jects, which is more important than overall precision.
Due to this fact, used algorithms can not be chosen
only by metrics.

Proposed pipeline should result in more natural
looking of virtual graphics, that can be used in sport
broadcasting, visualizing sponsors or virtual advertise-
ment.

In this paper, we propose flexible and robust sys-
tem for natural looking graphics insertion using ViBe
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[3], which is then refined by shadow removal (Sec-
tion 3.1.2) and smoothed by Global Sampling Matting
method. Eventually graphics is refined using texture
propagation described in Section 3.3.2. In Section 4
proposed pipeline is demonstrated on various datasets.

2. Related Work
In the past several years, numerous foreground seg-
mentation and image matting methods has been pro-
posed. Nonetheless combinations with image matting
algorithms were rarely tested.

2.1 Segmentation
Since majority of the sports are played by humans,
human segmentation can be adopted. Pose machines
algorithms [4, 5] use multi-stage Convolutional Neural
Network (CNN) to generate confidence map of joints
locations. Afterwards joints with high connection con-
fidence are connected. To address joints association,
Cao et al. [5] uses part affinity fields, which are pre-
dicted using CNN as well. Nonetheless such approach
can be used only to refine the segmentation mask, since
it generates only skeleton of persons as shown in Fig-
ure 2.

Input image (b) Output

Figure 2. Human segmentation using
Convolutional Pose Machines (CPM) [4] with SLIC
[6]. (b) Red area denotes human pose estimated by
CPM, white area stands for resultant segmentation.

Although with DensePose [7] release, pose ma-
chine can be utilized as standalone foreground seg-
menter. It is based on DensePose-RCNN architecture,
which uses ResNet50 [8] as region of interest (ROI) de-
tector. Although it was trained on the large DensePose-
COCO [7] dataset, it fails to detect body parts with a
skin color similar to the background, see Figure 9.

CNN-based semantic segmentation such as DeepLabv3+
[9] can be used as well. It is based on the encoder-
decoder architecture. The decoder is fairly simple, the
encoder part is on the other hand more complex and
flexible. Any deep CNN could be used as the encoder
part. Output from atrous spatial pyramid pooling is
added to the decoder input.

Another approach is background subtraction, which
models the background and then compare it with the

current frame to detect changes. FgSegNet [10] is
CNN-based background subtraction method, which
utilizes autoencoder architecture with triplet of CNNs
as the encoder. Although it has best performance in
ChangeDetection challenge, it needs to be retrained on
each category, which makes it impractical in situations,
where camera need to be often repositioned.

ViBe [3], MoG [11] and SubSENSE [12] are well-
known algorithms. Unlike MoG which models back-
ground pixels using multiple gaussians, ViBe as well
as SubSENSE model background using multiple sam-
ples. Nonetheless all background subtraction have to
handle sudden movement of static object, previously
classified as background, this phenomenon (referred to
as a ghost) leaves behind static hole in the background,
that will be misclassified as foreground.

ViBe uses the L2 norm to compute the color dis-
tance between the background samples Mi and the
frame I, pixels with the color distance larger then
the threshold TD, in TSC samples are marked as a
foreground in the segmentation mask S (Equation 1).
ViBe+ [13] propose refinement of the segmentation
mask using morphological operations, and usage of
different function computing color distance, however
our implementation of proposed color distance does
not yield similar results as in Van Droogenbroeck et
al. [13], so only refinement using the morphological
operations is used. Classical ViBe refined by morpho-
logical operations is addressed as ViBe#.

SubSENSE [12] is similar to ViBe [3], yet it uses
L1 norm to the compute color distance and the LBSP
[14] features to detect objects, which have similar color
as the background, nonetheless it does not exploit the
LBSP features to classify a shadow. Only MoG from
the mentioned algorithms separate shadow.

S =

{
f oreground, (∑n

i=1[||Mi− I||> TD])>= TSC

background, otherwise.
(1)

ViBe authors set TD, TSC, n to TD = 20, TSC = 2, n= 20.
Colors are in the range [0,255].

Chroma Key computes the color distance as well,
nonetheless is does not model a background. Color
distance is computed from the keyed color Ki, and
colors similar to the keyed color are classified as a
background. It can be expressed as a sum of differ-
ences over all the channels (Equation 2).

S =

{
f oreground, (∑3

i=1 |Ki− Ii|)> T
background, otherwise.

(2)

I denotes input frame.



2.2 Alpha Matting
Alpha matting refers to the problem of softly and ac-
curately extracting the foreground from an image [15].
Specifically the algorithm determines an alpha mask
α in order to create a composition C of the foreground
image F and the background image B:

C = Fα +B(1−α) (3)

The input of the alpha matting algorithms is trimap,
which specifies foreground (white color), background
(black color) and unkown pixels (gray color).

Methods like Closed Form Matting[16] which can
be categorized as propagation-based method, yields re-
sults better than the sampling-based methods, however
only the sampling-based and the CNN-based meth-
ods can be optimized to real time performance. Well
known sampling based methods are Global Sampling
[15] and Shared Matting [17]. Sampling methods cre-
ate samples set from known pixels and then compute
alpha matte [15].

Global sampling matting [15] create samples from
the border with an unknown area. Random samples
are added to the sample set as well. For every tested
sample, the cost function is computed to determine
fitness of the sample in the matting equation (Equation
3). The best pair of sample (F,B) is found using the
SamplePatch [15] algorithm.

In the bechmark conducted by Erofeev [18], Deep-
Matting has the best performance [19], is uses an au-
toencoder network. The encoder is consisted of layers
from VGG-16 [20] architecture.

3. Proposed pipeline

Proposed pipeline is divided into three major tasks,
coarse segmentation, segmentation refinement and graph-
ics insertion (Figure 3). The pipeline accepts an input
frame and an inserted graphics as an input.

The coarse segmentation step segments the fore-
ground objects, that will be brought on top of the in-
serted graphics. After coarse segmentation is executed,
refinement of the segmentation mask is performed.
Then the inserted graphics, foreground objects and the
current frame are composed.

3.1 Coarse Segmentation
Considering that this work aims on sport broadcast-
ing, human segmentation can be obtained by a pose
estimation [4, 5] in the combination with superpixeliza-
tion [6]. However the result shown in Figure 2 is not
optimal, thus this approach is not tested furthermore.

3.1.1 Segmentation
As mentioned in Section 1, preservation of the integrity
of the segmented objects is crucial for the perceptual
accuracy. As can be seen in Figure 9 ViBe preserve ob-
jects integrity, although a lot of noise is classified as a
foreground. Fortunately, the misclassified noise forms
only small blobs, which can be removed by applying
the same morphological operations as in Van Droogen-
broeck et al. [13] (Open morphology with kernel size
4x4, followed by a close morphology with kernel size
3x3). ViBe# refers to ViBe refined by morphological
operations. ViBe# yielded overall the best results as
shown in Table 1 and Figure 9, thus it is used in the
proposed pipeline.

3.1.2 Shadow detection
As mentioned in Section 2.1, ViBe [3] does not distin-
guish the foreground objects from their shadows. Thus
a simple shadow detector is proposed. It compares a
segmented objects color Ii and texture (Equation 5)
with the modeled background Mi, where index i de-
notes channel. Color distance is measured only from
A and B components in the LAB color space as can be
seen in Equation 4. O is the resulted shadow intensity.
Result from this method can be seen in Figure 5.

(a) (b) (c)

Figure 5. Shadow comparison on the PETS 2009
dataset. (a) Without shadow segmentation artifacts are
present. (b) Result with the proposed shadow
segmentation, see Section 3.1.2. (c) Smoothed out
shadow using Gaussian blur with the kernel size 5x5
and σ = 5. Shadow intensity was three times
increased to enhance visibility in figure.

∆D =

√
∑

i∈(A,B)
(Ii−Mi)

2 (4)

where A,B denote image components of the LAB color
space.

∆G = ||GI−GM|| (5)

where GI and GM are gradients of the grayscaled
frame and background. Gradients were computed us-
ing Sobel operator.
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Figure 3. Pipeline is divided into three major tasks, segmentation, segmentation refinement, graphics insertions.
Segmentation is performed by ViBe [3], then the segmentation mask is refined using open and close
morphological transformations, followed by shadow removal from the segmentation mask (described in Section
3.1.2). Next trimap is generated from the edges of the segmented objects as specified in Section 3.2.1.
Afterwards Global Sampling Matting [15] uses the trimap and the input frame, to smooth the segmentation
mask. Inserted graphics is transformed to match the position and the shape defined by a user. Then the graphics
is added to the input frame. Texture is propagated from the modeled background to the graphics, see Section
3.3.2. The remaining task is to bring foreground objects with their shadows on top of the inserted graphics.

(a) First frame (b) Input frame (c) (d)

Figure 4. Ghosts can appear in the foreground mask
created by the background subtraction algorithms. If
these methods are initialized simply with the first
frame, multiple ghosts can occur, which leads to a
misclassified background area as can be be seen in (d).
(a) First frame of the JNZP dataset. (b) Frame number
#21. (c) Segmentation mask produced by ViBe
initialized with a computed background, see
Section3.1. (d) Mask from ViBe with the first frame
initialization. Red area denotes a ghost merged with a
foreground object.

O =

{
Lbg−Lframe, ∆D < TC ∧∆G < TG

0, otherwise.
(6)

thresholds TC,TG were experimentally set to TC = 8
and TG = 60.

3.1.3 Background model initialization
ViBe is sensitive to the background model initializa-
tion, nonetheless it can be exploited to increase the
short term performance by initializing the background
model with a background analogous to the groundtruth
background resulting in the ghosts absence in the be-
ginning of the processing. Such initialization is ac-

(a) LITOVEL_01 (b) ALFHEIM (c) PETS09 (d) JNZP

Figure 6. Background computed by median of the
first 300 frames. On very dynamic scenes 300 frames
is enough to estimate the background, however when
foreground objects do not move enough, some parts of
the foreground objects can be classified as
background, see highlighted red area.

complished by computing a median of few hundred
frames (6). As can be seen in Figure 6 300 hundred
frames proved sufficient for the dynamic datasets. Due
to slow decay rate of the foreground pixels, ghosts dis-
appearance would take longer than with the mentioned
background model initialization, see Figure 4.

Mode-based background modeling [21] is faster
than median-based, as can seen in evaluation in Zheng
et al. [21]. Mode needs fewer frames than a median to
produce an accurate background model. However the
chosen method does not matter, since the background
initialization is supervised by a user, and as can be
seen in Figure 6 median produces sufficient results.

3.2 Refinement
Coarse segmentation provides only a binary mask,
which causes sharp edges of the foreground objects, as
can be seen in Figure 7. Therefore smoothing of the
segmentation mask is performed.

3.2.1 Trimap generation
After shadow is removed from the foreground mask,
proposed trimap generator generates unknown areas



by applying the Sobel operator, edges with magnitude
lower than 10 are removed, threshold TE = 10 was
empirically set. Afterwards a dilatation (with kernel
size 3x3) is used to thicken the unknown area in the
trimap. Example of a generated trimap can be seen in
Figure 7.

(a) Input frame (b) Trimap (c) ViBe (d) DeepMatting

Figure 7. Comparison of binary mask produced by
Vibe [3], and alpha mask created by DeepMatting
[19]. (a) Red area refers to the zoomed region. (b)
Trimap generated from edges, described in Section
3.2.1. (c) As can be seen, edges of the segmented
object are coarse. (d) Smoothed segmentation mask
using DeepMatting.

3.2.2 Alpha Matting
In order to the increase perceptual quality of the seg-
mentation, alpha matting algorithms are used. Al-
pha mattings algorithms take a trimap as an input and
produce an alpha mask α for the segmented objects.
Global Sampling Matting (GSM) [15] and Closed
Form Matting (CFM) [16] are well-known matting
algorithms. CFM [16] in comparison with GSM [15],
is more prone to outliers as can be seen in Figure
8, despite that CFM [16] results is more accurate in
VideoMatting challenge [18]. Unfortunately CFM [16]
can not be accelerated to real time processing, so GSM
[15] is used in the proposed pipeline.

CNN-based method DeepMatting [19] yields the
best results in the evaluation conducted by Erofeev et
al. [18]. It can achieve real time processing, however
only on the more powerful GPU than the authors of
this paper have used, as mentioned in Section 4.

GSM CFM

Figure 8. Alpha matting algorithms comparison
evaluated on the PETS 2009 dataset. CFM [16] is
more prone to outliers than GSM [15].

3.3 Graphics insertion
Firstly, coordinates of the inserted graphics x are trans-
formed using the homography H to the user defined
coordinates x′ using Equation 7.

x′ = Hx (7)

3.3.1 Composing
After the graphics transformation, it is added to the
frame, followed by the foreground objects and the
shadows. In order to add shadows, graphics are con-
verted to the LAB color space, then shadows are added
to the L component of the inserted graphics.

3.3.2 Texture Propagation
With a plain insertion of the graphics, background tex-
ture is suppressed. Naive texture propagation can be
achieved by lowering the opacity of the graphics, how-
ever it lowers the visibility of the graphics, see Figure
11. Proposed solution is to propagate the texture of the
background considering local and mean brightness of
the background, see Algorithm 1.

Algorithm 1 Texture propagation algorithm
1: procedure PROPAGATETEXTURE

2: G← graphics
3: Bg← modeled background

4: GL,GA,GB← LAB(G)
5: AvgBg← AverageColor(Bg)
6: AvgBgL←ComponentL(LAB(AvgBg))
7: BgL←ComponentL(LAB(Bg))

8: DiffL← BgL−AvgBgL
9: GL←Clamp(GL+DiffL,0,255)

10: G← (GL,GA,GB)

4. Results
As can be seen in Figure 9 DensePose [7] and DeepLabv3+
[9] fails to segment persons, that are ”camouflaged” or
small. Suprisingly DeepLabv3+ completely fails in the
greenscreen dataset (JZNP). SubSENSE [12] performs
quite well, however it sometimes remove details, see
Figure 9, LITOVEL 01 column. ViBe is producing
more false positives than false negatives, however such
result is more desired since the false positives can be
removed in the refinement step (Section 3.2). As pre-
viously stated the false positives can be removed in
the refinement step, unfortunately some matting algo-
rithms are not robust enough to handle correctly false
positives. Due to this fact small blobs of false positives
are rather removed by morphological operations. As
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T=0.23, Key:    (156, 137, 96) T=0.25, Key:    (59, 122, 23) T=0.25, Key:    (140, 134, 136) T=0.12, Key:    (59, 174, 32)

Figure 9. Segmentation evaluation over various datasets. (a) Shows the input frames, (b) shows groundtruths
in the ssf format (blue channel = foreground mask, green channel = shadows mask, red = Outside region of
interest). Results correspond to the following methods (c)DensePose [7], pink areas are detected ROIs, (d)
DeepLabv3+ [9], (e) SubSENSE [12], (f) ViBe [3], (g) Vibe#, see Section 2.1, (h) Chroma-key, specified by
Equation 2, the bottom parameters refers to the key color and the threshold which is used for a colors in the
range 〈0,1〉.



Table 1. Comparison of segmentation methods based on RMSE metric. None that RMSE metric is computed
only from a single frame.

Dataset DensePose
[7]

DeepLabv3+
[9]

SubSENSE
[12]

ViBe [3] ViBe# Chroma-key

PETS09 31.9649 19.1179 18.9051 28.9328 20.1093 113.7187
LITOVEL 01 39.3016 47.2691 54.1864 61.8984 35.2635 107.0621
ALFHEIM 19.0938 15.6315 20.1774 29.0520 20.4717 94.9830
JZNP 26.8841 68.8796 25.2947 22.6819 19.1658 15.0399
Average RMSE 29.3111 37.7245 29.6409 35.6413 23.7526 82.7009

Figure 10. Evaluation performed on VIRAT, JNZP, LITOVEL 01, PETS 2009 and ALFHEIM datasets. First
row corresponds to the processed frames. As can be seen on (a), hard shadows are classified as the foreground,
however due to fix threshold. However background color nor texture are propagated, thus it does not change the
visual appearance of the resulted image. Although it can spotted, that the proposed pipeline still struggles with
the colors similar to the background. (b) The pipeline is tested on green screen as well. (c), (e) show usage of
the pipeline on the sport datasets.
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Figure 11. Texture propagation enhances natural
appearance of the inserted graphics. (a) Naive texture
propagation using lowering opacity of the graphics.
(b) Proposed texture propagation algorithm using
Algorithm 1.

can be seen in Figure 9 (ViBe#) a majority of the false
positives is removed.

Although DeepMatting [19] and Closed Form Mat-
ting [16] have best results in VideoMatting benchmark
[18], DeepMatting [19] processes 320x320 image for
36ms (on Nvidia GTX 1070), thus it not capable of
25fps processing with the combination of the algo-
rithms used in the pipeline. Only sample-based meth-
ods [15, 17] have the potential to achieve desired speed.
As can be seen in He et al. [15] Global Sampling Mat-
ting (GSM) slightly outperforms Shared Matting [17],

therefore GSM [15] is used in the proposed pipeline.
The described pipeline is written in Python 3 using

OpenCV and NumPy packages. Current state of the
pipeline is far from real time processing (currently 5s
on the 1280x720 frame using i7-7500U processor), it
does not take any advantage of GPU. However ViBe
has been accelerated on the Nvidia GTX 1070 GPU and
it can process 180 frames (with resolution 1280x720)
per second.

5. Conclusions
In this paper, experiments were carried out to deter-
mine the best combination of existing algorithms to
handle the outlined task. Pose Machines combined
with superpixelization were found unsuitable for dense
human segmentation.

Utilization of ViBe has drastically increased accu-
racy of the segmentation. Exploiting the background
initialization (Section 3.1.3) removes majority of ghosts
.

As mentioned in Section 4 the system is not real
time, although the real time implementations of the
used algorithms are possible. Shadow segmentation
method has been proposed, which has similar perfor-



mance as MoG, although segmentation is failing if the
shadow is close to the black, see Figure 10.

Proposed texture propagation of the background
increases the natural look of the resulted image.

Despite the results of the suggested pipeline ap-
pears relatively satisfying, motion blur and color simi-
larity between the background and the foreground are
still challenging for the system.
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