
9
http://excel.fit.vutbr.cz

Distributed system for algorithmic trading
Michal Hornický

Abstract
The success of cryptocurrencies like Bitcoin has created many new opportunities. One of them
came somewhere around the year 2012-2013, in a form of an online cryptocurrency exchange.
Since then, many new online exchanges were created. These exchanges provide unprecedented
ease of use and access to everyone, contrasting existing financial exchanges. Day-trading∗on these
exchanges is easy, and has a large potential because of the extreme volatility of these new markets.
This paper outlines the design and implementation of a distributed system, that would facilitate this
task. The goals, which include ease of use for new users, scalability for large number of users, and
customization for advanced users, combined with problem domain pose interesting requirements,
which influenced the design and implementation.

Keywords: Automated trading — Distributed systems — Rust

Supplementary Material: Github Repository

*xhorni14@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction1

[Motivation] The innovations in financial sector, mainly2

cryptocurrencies like Bitcoin, have created new op-3

portunities. One of them, is the arrival of multiple4

online exchanges, that focus on cryptocurrency trading5

. These exchanges have very low barrier to entry, and6

can be used for easy day trading. Goal of this project is7

creation of a website, that would allow automatization8

of day trading on these exchanges.9

[Problem definition] In order to effectively sup-10

port multiple users, the designed system must be able11

to seamlessly scale according to computing load. It12

must must allow its users to easily create multiple trad-13

ing strategies, and execute trades on cryptocurrency14

exchanges.15

[Existing solutions] Most attempts to fail at one16

or more of the requirements. The older solutions are17

mostly command-line applications that require compli-18

cated installations, and hardware that must be continu-19

ously managed. One of these is the Gekko1 trading bot. 20

Main drawback of this solution is the use of JavaScript 21

as the implementation language, and the requirement 22

of Node.js. 23

Other cloud based solutions, that are more closely 24

related to our approach are usually overly complex, 25

requiring user to write complex strategies that must 26

decide not only when to execute trades, but specifics of 27

these trades. One of these systems is CryptoTrader2, 28

that uses CoffeeScript as a language for implementing 29

user strategies. This system supports multiple assets 30

within one strategy, making them extremely expres- 31

sive. However, the drawback of this approach is the 32

increased complexity. 33

[Our solution] our solution aims to surpass other 34

automated trading systems in several aspects. Thanks 35

to the decision to implement the system as a web ap- 36

1https://gekko.wizb.it/
2https://cryptotrader.org/

http://excel.fit.vutbr.cz
https://github.com/semtexzv/dp/
mailto:xhorni14@fit.vutbr.cz

plication, we remove all local software requirements,37

making the system very approachable. Thanks to the38

distributed architecture, the system will have the nec-39

essary degree of scalability.40

[Contributions] Implemented system is built upon41

scalable architecture that utilizes cloud environment,42

is able to scale from single to thousands of users seam-43

lessly, It also allows sub-second latency between re-44

ceiving of new financial information and possible exe-45

cution of actual trades on real exchange. Implemented46

system currently utilizes only one exchange, however47

support of additional exchanges should be extremely48

easy.49

2. Theoretical background50

In order to understand automated trading systems, we51

must first understand how, modern exchanges operate.52

The core concept of an exchange is the price discovery53

mechanism. In short, this means, that the exchange54

does not determine the price of an asset, but rather55

the price is ”discovered” by interactions of individual56

actors on the exchange. In simplistic terms, this corre-57

sponds to supply-demand market mechanism. When58

the supply of an asset is larger than demand, the price59

falls, and when the demand rises, the price rises ac-60

cordingly.61

2.1 Automated trading62

Today, most of the trading performed even on con-63

ventional exchanges is done by automated systems.64

Origins of these systems can be traced to the 1980s,65

but probably the biggest milestone was when IBM66

in 2001[1] experimented with automated trading, and67

implemented system consistently outperformed even68

professional traders.69

2.2 High frequency trading70

Modern incarnation of high-end automated trading sys-71

tems is called High Frequency Trading(HFT). These72

systems are commonly co-located with the exchanges,73

aiming for lowest possible latency between receiving74

financial data, and execution of market orders. We can75

divide them into several groups based on the decision76

process used for creating market orders.77

We will focus on Tick-data market making strate-78

gies. These strategies that utilize periodic information79

the about price of an asset in order to determine short80

and long term trends of this price. Based on the short81

and long term trends these strategies forecast the price82

into the future.83

The benefit of this approach is mainly simplicity.84

These strategies do not have to rely on complex data85

describing real world events, that might influence price 86

of an asset(eg. company mergers), and they do not 87

have to perform actual trades explicitly. 88

2.3 Computing environment 89

While strategies outlined earlier are easy to implement, 90

they require non-trivial amount of computing power. 91

Coupled with the the need to support multiple users, 92

the requirements for computing power needed to run 93

this system grow. 94

In order to provide this amount of computing power, 95

we decided to design and implement the system using 96

distributed architecture. This means, that the system is 97

written in way, that allows its individual components 98

to operate separately, and be deployed on different 99

machines. To achieve this goal, we have chosen to 100

use Cloud computing approach3 on the deployment 101

side. And utilize Actor Model as the core paradigm on 102

implementation side. 103

2.4 Actor model 104

Actor model is a conceptual model of describing con- 105

current computation[2]. Each actor can: Create new 106

actors, send messages, modify its state and decide how 107

to respond to received messages. Primary constraint of 108

this model is the restriction of modifying application 109

state. Each actor can modify its local state however 110

it wants, but can only affect other actors by sending 111

messages. 112

2.5 Rust & Actix 113

Due to the choice of the Actor model as a core paradigm, 114

the choice of possible implementation languages was 115

limited. The chosen language would have support this 116

programming model (either implicitly, or through the 117

use of a library). Other considerations included were 118

the runtime overhead, safety, ease of integration with 119

other technologies. Evaluated languages and frame- 120

works include: C# with Akka.NET, Erlang, Java with 121

Akka, and Rust with Actix. 122

Rust with the Actix library was chosen mainly 123

due to extremely low overhead of this programming 124

language (not requiring a VM), ease of integration 125

with other technologies (LUA), and due the authors 126

personal interest in this language, and corresponding 127

library. 128

3. Designed system 129

Probably the biggest obstacle to the implementation 130

of the system was its distributed nature. On the imple- 131

mentation side, this meant the use of Actor model, as 132

3https://en.wikipedia.org/wiki/Cloud computing

a core architectural paradigm. The use of the Actix133

library has simplified many challenges with the use of134

this computing paradigm, but it also came with some135

drawbacks. The library allows seamless use of actors136

within single or multi-threaded environments, support-137

ing use of single or multiple concurrent threads, but it138

does not contain an implementation of primitives that139

would allow actors to communicate between processes140

or even different machines.141

3.1 Communication142

Therefore, part of this project was the design, and143

implementation of this capability. We have designed144

and implemented the actix-zmq library, that provides145

actors for communication over the ZeroMQ network-146

ing technology, and actix-comm library that provides147

abstractions for implementing simple Request-Reply148

services, Publish-subscribe pipelines, and other sup-149

plementary components (eg. Load balancing broker150

for services). The actix-comm library builds on top of151

actix-zmq, and both of them should be usable in other152

projects, and will be published as separate libraries,153

that should enrich already rich ecosystem around the154

Actix library.155

3.2 Deployment156

Since we are using Cloud environment as our primary157

deployment target, this side of the system also had158

to be adapted. We decided to use Kubernetes as a159

primary tool for managing our deployments.160

Kubernetes is an orchestration tool, used for au-161

tomated deployment and management of distributed162

systems running in the cloud environment. Kubernetes163

defines a set of primitives, which are used to describe164

a distributed system. The kubernetes runtime then165

dynamically modifies state of the system, to conform166

to described model. The kubernetes runtime runs on167

a Cluster. A cluster is comprised of multiple virtual168

machines(Nodes), and can dynamically scale number169

of used nodes.170

3.3 Actual system171

The actual system is then designed as a set of loosely172

coupled components. Each component is comprised of173

several kubernetes Pods, managed by a Deployment,174

and exposed by a Service. Within each pod, there175

might be multiple containers, but most of them only176

use single one.177

Here are components that that describe our system178

in simplest terms179

• Exchange - provides interface to a specific ex-180

change, currently only the Bitfinex exchange,181

• Core - Receives updates from exchanges, De- 182

cides when to evaluate strategies against this 183

data, and forwards trading decisions to individ- 184

ual exchanges. 185

• Eval - Evaluates strategies using multiple load- 186

balanced workers 187

• Web - Provides web interface for user interaction 188

• Storage - Stores financial and user data. 189

4. Implementation 190

As mentioned earlier, the implementation was per- 191

formed using the Rust language on top of Actix actors 192

as a basic architectural blocks. It is currently divided 193

into 2 executables, The web executable houses the user 194

interface implemented using actix-web as a back-end, 195

and LitElement4 based web application as front-end. 196

The second executable is the trader application. 197

This is implemented as a command line application, 198

that contains the implementations of several different 199

components, and should be split into separate exe- 200

cutable for each component in the future. 201

4.1 Data flow 202

The whole system is best described by the type of data 203

it consumes, and how this data flows throughout it. 204

Primary data sources are individual exchanges, and the 205

web application. The web application only communi- 206

cates with the database, and thus is not that interesting 207

in this aspect. 208

However, the exchanges are more interesting. Most 209

cryptocurrency exchanges provide REST API used for 210

executing trades, and WebSocket endpoint, that is used 211

for providing latest financial data. For each exchange 212

supported by the system there is a dedicated compo- 213

nent, that serves as an adapter to this exchange. Main 214

purpose of an exchange adapter is translation system 215

requests into a specific exchange API requests, and 216

forwarding the updates received over WebSocket to 217

core system component. 218

The individual exchange adapters each connect 219

using PUB ZeroMQ socket to core service. This forms 220

a Fan-In topology, that would be difficult to implement 221

using other technologies. 222

The data flowing from exchanges is in the form of 223

per–minute OHLC5 data. This is then processed by 224

the core component, which removes duplicate entries, 225

computes data points for different time-scales, and 226

publishes them along with received updates. During 227

this step, the data is also stored into persistent stor- 228

4https://lit-element.polymer-project.org/
5https://en.wikipedia.org/wiki/Open-high-low-close chart

age, which currently takes the form of a PostgreSQL229

database.230

The decision actor in core component periodically231

loads the information about assignment of strategies232

to individual assets. Whenever it receives new OHLC233

data it determines which strategies should be evaluated,234

and sends this information to the evaluation compo-235

nent, which is implemented as a load-balancing broker,236

with multiple workers.237

Whenever an evaluation worker receives an evalua-238

tion request, it retrieves the strategy text, and historical239

data from the database. It then creates a new Lua VM,240

configures it (eg. disabling file access), and provides a241

suite of analytical functions, that can be used by indi-242

vidual strategies. Then it loads the strategy script into243

this VM, and executes it.244

// Simple moving average
local sma = ta.sma(10)
// Exponential moving average
local em = ta.ema(10)

// Short term > long term
if sma() > ema() then

return "short"
else

return "long"
end

Figure 1. Example strategy

The output of the strategy is the desired market245

position - ”long” or ”short”, the former denoting own-246

ership of target asset and the latter denoting the owner-247

ship of the exchange currency, eg. US Dollars.248

This work does not focus upon the individual strate-249

gies, or methodologies behind them, it only provides250

basic building blocks for creating them. One of future251

enhancements might the support of more advanced252

types of strategies.253

Then upon receiving the results of strategy eval-254

uation, the core component checks whether there is255

trading account information associated with the as-256

set. If there is, it then sends a request to an exchange257

adapter, which then might check the current market258

position of the user, and possibly execute one or more259

trades, ensuring that the requested market position is260

achieved on this trading account.261

5. Conclusions262

[Paper Summary] This paper outlined the conceptual263

idea behind the project, the issues encountered and264

how they influenced the design and an actual imple- 265

mentation of the system. The system is implemented 266

as a distributed application, with focus on scalability, 267

and is accessible using a web application, satisfying 268

the usability requirements. 269

[Highlights of Results] The implemented system 270

currently supports single exchange, and over 200 dif- 271

ferent asset pairs. Each of these asset pairs can have 272

a single LUA strategy, and single trading account as- 273

sociated with it. The system supports executing large 274

number of strategies, with sub-second latency between 275

updates from an exchange, and execution of trades on 276

these exchange. Compared to command-line applica- 277

tion solutions, our system can support arbitrary num- 278

ber of strategies, with possible future improvement of 279

tracking individual strategy performance. Compared 280

to other cloud based solutions, our system provides 281

extremely easy strategy implementations 282

[Paper Contributions] Achievement of these goals 283

was mainly possible due to distributed approach. How- 284

ever, this approach brought its own set of complica- 285

tions, which required solutions. These solutions were 286

implemented in support libraries actix-zmq and 287

actix-comm, that should be useful in other projects 288

with similar goals. 289

[Future Work] While functional, the system lacks 290

several pieces of advanced functionality (eg. More 291

complex strategies or testing strategies on historical 292

data). The system should be also extended, to support 293

multiple exchanges. In addition to extending the actual 294

system, the support libraries mentioned earlier are also 295

good targets for future development. 296

Acknowledgements 297

I would like to thank my supervisor RNDr. Marek 298

Rychlý Ph.D. for his help, and valuable advice regard- 299

ing this project provided during frequent meetings. 300

References 301

[1] Gerald Tesauro and Rajarshi Das. High- 302

performance bidding agents for the continuous 303

double auction. In Proceedings of the 3rd ACM 304

Conference on Electronic Commerce, EC ’01, 305

pages 206–209, New York, NY, USA, 2001. ACM. 306

[2] Carl Hewitt. Actor model for discretionary, adap- 307

tive concurrency. CoRR, abs/1008.1459, 2010. 308

	Introduction
	Theoretical background
	Designed system
	Implementation
	Conclusions
	References

