
9
http://excel.fit.vutbr.cz

Yatta - dynamic, functional programming language
for GraalVM
Adam Kövári*

Abstract
GraalVM is a relatively new runtime/virtual machine capable of transforming Abstract Syntax Tree
(AST) interpreters into highly optimized compilers. GraalVM provides Java API for implementing
AST interpreters that dynamically self-rewrite themselves to provide high runtime performance,
called Truffle framework [1].
I have designed Yatta language as an experimental language/interpreter built for GraalVM and
implemented it using Truffle framework. Actual implementation of Yatta interpreter is currently
in progress and most features demonstrated in this paper are implemented or in the state of
proof-of-concept implementation and those which are not yet implemented, are clearly marked so.
Additionally, there is a clear path towards first release sketched in the Conclusions section.
Yatta explores viability of an advanced functional programming language in the GraalVM environ-
ment. It delivers advanced features, such as advanced pattern matching, powerful built-in types
and data structures, and built-in concurrency. Asynchronous computations are transparent to the
programmer and are implemented by the runtime system.
While Yatta is currently an area of active research and development, one of the main goal is to
retain qualities necessary for real world usage. One of the core principles of this language must
be easy readability and powerful standard library, so that the language can succeed against its
competitors both in the GraalVM world and among other functional programming languages.

Keywords: yatta, dynamic, functional, programming language, graalvm, truffle framework

Supplementary Material: N/A

*ikovari@fit.vutbr.cz, 0000-0001-8552-6930, Faculty of Information Technology, Brno University of Technology

1. Introduction1

Yatta is a minimalistic, opiniated, (strongly) dynami-2

cally typed, strict, functional programming language,3

with ML-like syntax, for GraalVM polyglot virtual4

machine (VM).5

Its main purpose is to explore the potential of a6

language that would combine some of the most use-7

ful features of functional programming, such as im-8

mutable data structures, powerful pattern matching,9

simple built-in concurrency in a coherent, easy-to-read10

language for Java Virtual Machine (JVM).11

Yatta does not insist on purity and values readabil-12

ity and ease of use above theoretical guarantees of pure13

functional languages.14

Strictly speaking, Yatta does not implement any15

existing formal model precisely, and it forces its con- 16

currency model built into language itself. This is a 17

trade-off that on one hand eliminates possibility of full 18

user control of the underlying threading implemen- 19

tation, on the other hand it allows for writing boiler- 20

plate/dependency free concurrent code with clear syn- 21

tax and semantics. This approach also eliminates 22

chaotic situations in mainstream programming lan- 23

guages, where concurrency was added later and/or 24

in form of mutually incompatible approaches and li- 25

braries. 26

Yatta aims to solve some of the shortcomings, both 27

practical and theoretical, of existing functional JVM 28

languages, while exploring benefits of implementation 29

of a functional programming language on GraalVM 30

http://excel.fit.vutbr.cz
mailto:ikovari@fit.vutbr.cz

via Truffle framework.31

• Clojure - doesn’t provide an implicit non-block-32

ing IO, nor built-in pattern matching33

• Scala - very complicated type system due to ob-34

ject oriented paradigm (OOP) combined with35

functional programming, notoriously slow com-36

pilation times, lack of support for built-in lan-37

guage level asynchronous IO / concurrency38

• Eta / Haskell - pure, lazy evaluation and related39

memory leaks [2], monads for side-effects40

• Erlang - although not a JVM language, it is41

a language with a built in concurrency model42

in form of actor system. From Yatta’s point of43

view, actor model is still a low-level approach44

that requires significant control of the user to45

model concurrent execution46

1.1 Motivation47

Yatta language has two main reasons to exist. First48

is to provide a real-world functional programming49

language that is very easy to use and is not a Lisp50

language. Lisp languages are not only notoriously fa-51

mous for the parentheses-overload syntax, but mainly52

for their abilities in the meta-programming field. Meta-53

programming, while useful at times, can be an enemy54

to ability to understand other people’s code. Yatta aims55

to be very easily readable, written, no matter by whom.56

Secondly, it is to abstract users from dealing with57

non-blocking asynchronous computations and paral-58

lelism. While these features are commonly available in59

other languages nowadays, they are almost exclusively60

non-native solutions that come in forms of libraries61

or frameworks and are difficult to integrate with ex-62

isting codebases. On top of that, dealing with these63

additional libraries requires conscious effort of the pro-64

grammer to choose/learn/integrate these libraries into65

their mindset when writing new code.66

GraalVM conveniently provided a relatively easy67

way to implement a new, high level, programming lan-68

guage without the hassle of low-level native code/byte-69

code generation. Truffle framework allows writing70

Yatta interpreter in the Java language as easily as writ-71

ing an AST interpreter. Furthermore, it provides tools72

for optimizing the interpreter performance based on73

runtime profile.74

Yatta language has a well-defined list of priorities:75

• good readability - simple syntax, few keywords,76

virtually no boilerplate77

• single expression principle - program is always78

one expression - this enables simpler evaluation79

and syntax, allows writing simple scripts as well80

as complex applications81

• few types of expressions - module, function1, 82

case, if, let, do and try/catch + raise 83

• simple module system - ability to expose func- 84

tions for use in other modules, and ability to 85

import them from other modules. Modules are 86

first level values and can be created dynamically 87

• powerful and efficient built-in data structures 88

with full support for pattern matching 89

• built-in runtime level non-blocking asynchronous 90

IO 91

• simple runtime level concurrency, no additional 92

types or data structures necessary 93

• polyglot language - interoperability with other 94

languages via GraalVM 95

The motivation and priorities for Yatta language 96

design yield a language that is different than existing 97

functional languages, in both features and level of 98

abstraction it provides, specifically abstraction related 99

to asynchronous and parallel computations. 100

2. Expressions 101

Program in Yatta consists always of evaluation of a 102

single expression. In fact, any Yatta program consist of 103

exactly one expression. Note that syntax in few cases 104

is not final and a subject of an active development. 105

2.1 Basics 106

Values in Yatta are represented using following syntax: 107

• string - in quotes: "hello world" 108

• tuple - in parenthesis: (1, 2, 3) 109

• sequence - in brackets: [1, 2, 3] 110

• symbols - preceded by a colon: :ok 111

• dictionary - in curly braces: 112

{:one = 1, :two = 2} 113

• anonymous function(lambda): 114

\first second -> first + second 115

• function application: function name and argu- 116

ments separated by spaces: 117

function arg_one arg_two 118

• none: () 119

2.2 Definition of aliases in the executed ex- 120

pression 121

let expression allows defining aliases in the executed 122

expressions. This expressions allows evaluating pat- 123

terns as well, so it is possible to deconstruct a value 124

from a sequence, tuple, dictionary directly, for exam- 125

ple: 126

1function does not need a keyword, it is defined by a name and
arguments (patterns)

Listing 1. let expression
let127

(1, second) = (1, 2)128

pattern = expression129

in130

expression131

2.3 Sequence of side effects132

do2 expressions is used for definition of a sequence of133

side effecting expressions.134

Listing 2. do expression
do135

start_time = Time\now136

(:ok, line) = File\read_line f137

end_time = Time\now138

printf line139

printf (end_time - start_time)140

end141

2.4 Pattern matching expression142

case expression is used for pattern matching on an143

expression.144

Listing 3. case expression
case File\read_line f of145

(:ok, line) -> line146

(:ok, :eof) -> :eof147

err@(:error, _) -> err148

tuple # guard expressions below149

| tuple_size tuple == 3 -> :ok150

| true -> :ok151

_ -> (:error, :unknown)152

end153

2.5 Conditional expression154

if is a conditional expression that takes form:155

Listing 4. if expression
if expression156

then157

expression158

else159

expression160

Both then and else parts must be defined.161

2.6 Module162

module is an expression representing a set of func-163

tions. Modules must have capital name, while pack-164

ages are expected to start with a lowercase letter.165

Listing 5. module expression
module package\DemoMmodule166

exports function1, function2167

2do-expression is still in development and the syntax is a sub-
ject of change

of 168

function1 = :something 169

function2 = :something_else 170

2.7 Import expression 171

Normally, it is not necessary to import modules, like 172

in many other languages. Functions from another mod- 173

ules can be called without explicitly declaring them 174

as imported. However, Yatta has a special import 175

expression that allows importing functions from mod- 176

ules and in that way create aliases for otherwise fully 177

qualified names. 178

Listing 6. import expression
import 179

funone as one_fun 180

from package/SimpleModule 181

in onefun :something 182

2.8 Exception raising & catching expression 183

raise3 is an expression for raising exceptions: 184

Listing 7. raise expression
raise :bad_arg 185

186

alternatively with a message 187

188

raise :bad_arg "Message string" 189

try/catch is an expression for catching excep- 190

tions: 191

Listing 8. try/catch expression
try 192

expression 193

catch 194

(:bad_arg, error_msg) -> :error 195

(:io_error, error_msg) -> :error 196

end 197

3. Pattern Matching and built-in Data
Structures

198

Yatta has a rich set of built-in types, in addition to 199

ability to define custom data types, known as records. 200

Standard types include: 201

• integer - signed 64 bit number 202

• float - signed 64 bit floating point number 203

• big integer - arbitrary-precision integers 204

• big decimal - arbitrary-precision signed decimal 205

numbers 206

• byte 207

• symbol 208

3raise is still in development and the syntax is a subject of
change

• char - UTF-8 code point209

• string - UTF-8 strings210

• tuple211

• sequence - constant time access to both front212

and rear of the sequence213

• dictionary - key-value mapping214

• none - no value215

Records are implemented using tuples and are a216

local to modules. Their syntax is not defined yet, how-217

ever, they conceptually allow accessing tuple elements218

by name, rather than index.219

Pattern matching is the most important feature for220

control flow in Yatta. It allows simple, short way of221

specifying patterns for the built in types, specifically:222

• Simple types - numbers, booleans, symbols223

• Tuples & records224

• Sequence & reverse sequence, multiple head &225

tails & their combinations in patterns226

• Dictionaries227

• let expression patterns228

• case patterns229

• Function & lambda patterns230

• Guard expressions231

• Non-linear patterns [3] - ability to use same vari-232

able in pattern multiple times233

• Strings and regular expressions234

• Underscore pattern - matches any value235

Pattern matching, in combination with recursion236

are the basis of the control flow in Yatta. Yatta supports237

tail-call optimization, to avoid stack overflow for tail238

recursive functions.239

4. Asynchronous non-blocking IO &
Concurrency240

Yatta provides fully transparent runtime system that241

integrates asynchronous non-blocking IO features with242

concurrent execution of the code. This means, there243

is no special syntax or special data types represent-244

ing asynchronous computations. Everything related245

to non-blocking IO is hidden within the runtime and246

exposed via the standard library4, and all expressions247

consisting of asynchronous expressions5 are evaluated248

in asynchronous, non-blocking matter.249

Alternative for building asynchronous operations250

directly into language itself would be development of251

4Asynchronous IO operations in the standard library will be
implemented using Java NIO

5Asynchronous expression is usually obtained from the stan-
dard library or created by function timeout

such library for existing programming language. Un- 252

fortunately, such approach has several shortcomings, 253

mainly that such library would have to be adopted 254

by other libraries/frameworks in order to be usable 255

and it would still impose additional boilerplate sim- 256

ply because libraries cannot typically change language 257

syntax/semantics. This is why Yatta provides these 258

features from day one, built into language syntax and 259

semantics and therefore it is always available to any 260

program without any external dependencies. At the 261

same time, putting these features directly on the lan- 262

guage/runtime level allows for additional optimiza- 263

tions that could otherwise be tricky or impossible. 264

The example below shows a simple program that 265

reads line from two different files and writes a com- 266

bined line to the third line. The execution order is as 267

follows: 268

1. Read line from file 1, at the same time, read line 269

from file 2 270

2. After both lines have been read, write file to file 271

3 and return it as a result of the let expression 272

The important point of this rather simple example 273

is to demonstrate how easy it is to write asynchronous 274

concurrent code in Yatta. 275

Listing 9. non-blocking IO example
let 276

(:ok, line1) = File\read_line f1 277

(:ok, line2) = File\read_line f2 278

in 279

File\write_line f3 (line1 ++ line2) 280

This allows programmers to focus on expressing 281

concurrent programs much more easily and not having 282

to deal with the details of the actual execution order. 283

Additionally, when code must be executed sequentially, 284

without explicit dependencies, a special expression do 285

is available. 286

In terms of implementation, the runtime system of 287

Yatta can be viewed in terms of promise pipelineing or 288

call-streams [4]. The difference is that this pipelining 289

and promise abstraction as such is completely transpar- 290

ent to the programmer and exists solely on the runtime 291

level. 292

In terms of parallelization of non IO related code, 293

Yatta will provide several standard library features, 294

which will turn normal functions into runtime-level 295

promises. 296

5. Evaluation 297

Evaluation of an Yatta program consists of evaluat- 298

ing a single expression. This is important, because 299

everything, including module definitions are simple300

expressions in Yatta.301

Module loader then takes advantage of this prin-302

ciple, knowing that an imported module will be a file303

defining a module expression. It can simply evaluate304

it and retrieve the module itself.305

6. Syntax306

Syntax is intentionally very minimalistic and inspired307

in languages such as SML or Haskell. There is only a308

handful of keywords, however, it is not as flexible in309

naming as Haskell for example.310

Yatta programs have ambition to be easily readable311

and custom operators with names consisting of sym-312

bols alone are not that useful when reading programs313

for the first time. Therefore Yatta does not support314

custom operators named by symbols only.315

7. Error handling316

Yatta is not a pure language, therefore it allows raising317

exceptions. Exceptions in Yatta are represented as a tu-318

ple of a symbol and a message. Message can be empty,319

if not provided as an argument to the keyword/function320

raise.321

Yatta, as it is running on GraalVM platform needs322

to support catching underlying JVM exceptions. These323

exceptions can be caught by fully qualified name of324

the Java exception class.325

Furthermore, Yatta will provide standard functions326

to extract message from the JVM exceptions, as well327

as a stacktrace from any exceptions.328

Catching exceptions is exactly the same for under-329

lying asynchronous code, with no additional syntax330

or semantics required. Yatta runtime makes sure ex-331

ceptions are caught regardless of whether the function332

being executed is an IO/CPU runtime promise or a333

basic function.334

This makes it easy to write asynchronous and non-335

blocking code with proper error handling, because to336

the programmer code always appears exactly the same,337

as if it were blocking, synchronous code in mainstream338

languages.339

Previous example extended by error handling:340

Listing 10. non-blocking IO example - Error handling
try341

let342

(:ok, line1) = File\read_line f1343

(:ok, line2) = File\read_line f2344

in345

File\write_line f3 (line1 ++ line2)346

catch347

(:match_error, _) -> :error348

(:io_error, _) -> :error 349

end 350

This example is just for demonstration of handling 351

errors when using asynchronous IO code, standard 352

library, including the file module is not defined yet. 353

8. GraalVM & Truffle Framework 354

GraalVM [5] is a high-performance Virtual Machine 355

with approach that relies on AST interpretation where 356

a node can rewrite itself to a more specialized or 357

more general node, together with an optimizing com- 358

piler that exploits the structure of the interpreter [1]. 359

The compiler uses speculative assumptions and de- 360

optimization in order to produce efficient machine 361

code. 362

Truffle framework is a Java library that allows writ- 363

ing an AST interpreter for a language. An AST inter- 364

preter is probably the simplest way to implement a 365

language, because it works directly on the output of 366

the parser and does not involve any bytecode or con- 367

ventional compiler techniques, but it is often slow. 368

GraalVM has combined it with a technique called 369

partial evaluation [6], which allows Truffle to use 370

GraalVM to automatically provide a just-in-time com- 371

piler for the language, just based on the AST inter- 372

preter. 373

Yatta is implemented using Truffle framework and 374

in this way benefits from various just-in-time optimiza- 375

tions available in GraalVM. Yatta interpreter can be 376

used within GraalVM, or distributed as a standalone, 377

ahead-of-time, compiled native binary using Substrat- 378

eVM. 379

In terms of polyglot use, Yatta will not allow use 380

of OOP code directly, mainly because that would re- 381

quire support for syntax for calling methods, creating 382

objects and supporting OOP syntax is something that 383

would compromise the simplicity of the syntax with 384

an unnecessary clutter. Instead, Yatta focuses on defin- 385

ing clear interface for writing wrappers that provide 386

compatible, functional, interface to external code and 387

libraries. 388

What this means in practice, is that calling a Java 389

library will not be possible directly, without writing 390

a wrapper first. Yatta values simple syntax more than 391

ability to call Java code directly. 392

9. Conclusions 393

Yatta is among first functional programming languages 394

being implemented on GraalVM. Perhaps the first one 395

with advanced pattern matching of which the imple- 396

mentation has already presented several interesting 397

challenges, which will be explored in further papers. 398

Concurrency model in Yatta is interesting in the399

sense of level of abstraction it provides. Asynchronous400

and non-blocking nature is built into standard library401

and requires no interaction or even awareness of the402

programmer. Parallelization of CPU-bound computa-403

tions is very simple and presumes knowledge of only404

a handful of standard library functions. It is built with405

functions alone, no abstraction, such as processes, mes-406

sage sending or synchronization is required.407

I believe Yatta combines interesting, real-world408

inspired, concepts and presents itself as a bold step for-409

ward in the area of dynamic programming languages.410

Simplicity, ease of use, lack of complicated abstrac-411

tions, such as monads, can prove to be very useful for412

writing scripts, applications and complex systems.413

This paper presents new dynamic, functional pro-414

gramming language Yatta, for GraalVM. Yatta com-415

bines useful properties of functional programming416

languages, such as immutability or pattern matching,417

with simple asynchronous computations and built-in418

runtime-level concurrency model.419

Yatta is an experimental language, that hopes to420

prove that further innovation in dynamic languages421

is useful for both real-world applications, as well as422

a research topic involving areas such as concurrent423

evaluation for example.424

Yatta is in active development. Module system,425

pattern matching is in very advanced status, non-block-426

ing IO and concurrency are currently in the status of427

a proof of concept. Further development will aim to428

deliver results in terms of performance in real-world429

use-cases so that it becomes clear which places need430

to be optimized more.431

Functional programming is often thought in terms432

of static languages with strong static compile time433

guarantees. Yatta goes in a different direction and ex-434

plores potential as a dynamic language with a powerful435

runtime system. This makes language much simpler436

to read and write in.437

Yatta is currently in active development and there438

is a clear path towards the first release. I’m working439

on delivering first usable release along with a standard440

library later this year.441

This includes:442

• implementation of records443

• implementation of non-blocking IO and concur-444

rency445

• exception handling446

• enable polyglot use of other languages447

• adding additional types, such as big integer /448

decimal449

• additional tests, optimizations and syntax cleanup450

• better strings, including string interpolation, reg- 451

ular expressions and pattern matching 452

These are the features I aim towards completing 453

prior to first public release. 454

Acknowledgements 455

I would like to thank my supervisor Prof. Alexander 456

Meduna for his continuous support and guidance, most 457

notably in the area of formal models and theoretical 458

computer science. 459

I would also like to thank Fedor Gavrilov, who 460

has been essential in the implementation of data struc- 461

tures as well as numerous brainstorming sessions and 462

discussions about variety of concepts of the language. 463

References 464

[1] Thomas Würthinger, Andreas Wöß, Lukas Stadler, 465

Gilles Duboscq, Doug Simon, and Christian Wim- 466

mer. Self-optimizing ast interpreters. In Proceed- 467

ings of the 8th Symposium on Dynamic Languages, 468

DLS ’12, pages 73–82, New York, NY, USA, 2012. 469

ACM. 470

[2] Neil Mitchell. Leaking space. 471

[3] R. Ramesh and I. V. Ramakrishnan. Nonlinear 472

pattern matching in trees. J. ACM, 39(2):295–316, 473

April 1992. 474

[4] B. Liskov and L. Shrira. Promises: Linguistic 475

support for efficient asynchronous procedure calls 476

in distributed systems. SIGPLAN Not., 23(7):260– 477

267, June 1988. 478

[5] Thomas Würthinger, Christian Wimmer, Andreas 479

Wöß, Lukas Stadler, Gilles Duboscq, Christian 480

Humer, Gregor Richards, Doug Simon, and Mario 481

Wolczko. One vm to rule them all. In Proceed- 482

ings of the 2013 ACM International Symposium 483

on New Ideas, New Paradigms, and Reflections on 484

Programming & Software, Onward! 2013, pages 485

187–204, New York, NY, USA, 2013. ACM. 486

[6] Thomas Würthinger, Christian Wimmer, Chris- 487

tian Humer, Andreas Wöß, Lukas Stadler, Chris 488

Seaton, Gilles Duboscq, Doug Simon, and 489

Matthias Grimmer. Practical partial evaluation 490

for high-performance dynamic language runtimes. 491

In ACM SIGPLAN Notices, volume 52, pages 662– 492

676. ACM, 2017. 493

	Introduction
	Expressions
	Pattern Matching and built-in Data Structures
	Asynchronous non-blocking IO & Concurrency
	Evaluation
	Syntax
	Error handling
	GraalVM & Truffle Framework
	Conclusions
	References

