BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Autonomous Automation in the Internet of Things

David Piskula*

Device Automation

0
-
T
1
i
Cloud Communication

Local Communication

Abstract

The aim of this work is to assess the current state of automated Internet of Things networks,
describe the problems of existing solutions and design a system that solves some of them. Two of
the most common issues are the overdependence on Cloud servers and loss of functionality without
an internet connection. The designed system solves these by moving automation from the Cloud to
a gateway at the edge of the network. The gateway connects to the Cloud to report device states,
store telemetry and receive remote commands, however, it is able to perform automation and data
processing even in an offline state. The result is part of a complete Internet of Things solution used

in a smart home model created in cooperation with NXP Semiconductors.

Keywords: Internet of Things — Edge Computing — Autonomous Automation

*xpisku02@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

Our world is becoming more connected every day.
This resulted in the emergence of the Internet of Things,
which brings internet connectivity to all kinds of ob-
jects from industrial machines to wearable devices,
sensors and actuators. This area of technology is still
relatively new however, and there are many problems
that need to be solved before it can truly become main-
stream. Among those problems is the insufficient au-
tonomy of connected end points and their overdepen-
dence on Cloud servers explored in this paper. The pur-
pose of this work is to design a system that:

e Leverages advantages offered by the Cloud
e Remains functional when disconnected

e Offers customizable automation schemes

e Prevents the loss of valuable data

The previous trend was to integrate the Internet
of Things with Cloud Computing and leave most of
the data processing to the Cloud. The papers [1]
and [2] describe how the limited computational ca-
pacity of low-power Internet of Things devices is not

enough to achieve on-site data processing. Addition-
ally, they describe how these devices are not capable
of collecting, storing and analyzing the large amounts
of data generated by Internet of Things networks. In-
stead, they suggest a paradigm they call CloudloT, in
which all of the data is sent directly to some Cloud plat-
form, processed there and any resulting configuration
changes are then sent back to the devices.

The suggested approach, however, is vulnerable to
Cloud service outages and brings latency to data pro-
cessing and device automation. The aim of this work
is to study and describe other approaches that have
been surfacing in the last few years and based on them
to create a working application as a demonstration of
a possible solution to these issues.

Among home automation solutions, there have
been several failing products on the market. Revolv [3]
was a smart home hub with the purpose of controlling
a wide range of different gadgets via a smartphone app.
However, the hub was completely reliant on the de-
veloper company’s cloud-based service. Revolv was


http://excel.fit.vutbr.cz
mailto:xpisku02@fit.vutbr.cz

eventually bought by Nest and subsequently, the cloud
service was shut down, rendering all Revolv hubs in-
operational. Another product with a similar fate was
Emberlight [4], a smart light socket designed to work
with ordinary light bulbs. Its aim was to enable a mo-
bile application to control regular light bulbs instead of
having to buy specialized and expensive ones. The is-
sue was that all controls were done though a Cloud
service which was, again, shut down.

In the last few years, a new design paradigm has
been gaining popularity - the Edge Computing. This
strategy brings some processing power back from
the Cloud to the local network. Such idea was ex-
plored in [5] with the goal of implementing a smart
e-Health gateway to bring the Internet of Things to
healthcare. The paper focuses on inventing a system
architecture that would allow for a secure network with
local storage, data filtering and analytics. The result of
their work was UT-GATE, a functional gateway with
a WebSocket server providing local servicing while
communicating with a remote Cloud platform to re-
ceive improved processing rules gained through deeper
analytics.

Another study concerning this area was described
in [6]. This team of researchers tried to tackle the is-
sues by proposing a hierarchical fog computing archi-
tecture that is flexible, scalable and brings comput-
ing resources close to end devices. The architecture
consists of a network of computationally powerful
fog nodes that can each connect to a Cloud server to
offload their work if needed. The resulting design
can substantially reduce traffic loads in networks and
the communication delay that can be a problem in
purely Cloud Computing based systems.

There are also products on the market already that
offer partial or even full functionality to connected
networks even without an internet connection. The lat-
est Amazon Echo Plus, for example, allows limited
usage of their voice controlled home control hub of-
fline. Phillips Hue Bridge is another example, as it
only needs an internet connection for remote control
but locally can work completely offline. Hubitat [7]
is a home automation platform, that was built with
offline functionality in mind. Despite the ability to
use an internet connection for updates and Cloud com-
munication, it does not need the internet connection
for any of its major functions. This makes the whole
system more secure, private and removes latency.

The solution presented by this work solves Cloud
dependency by performing data processing and au-
tomated actions on the network’s gateway. It uses
conditions that act as rule sets to decide which de-

vice should be affected and how, and reports state
changes to the Cloud. These conditions can be set up
either remotely through the Cloud or even directly, if
a user with a connected mobile application is in range
of the gateway’s wifi or bluetooth signal. There are
also processes in place, that take care of reconnect-
ing the gateway automatically and resynchronizing
states with the Cloud. Finally, telemetry reports can be
buffered in several different buffering modes, which
ensures that no important data is lost even with pro-
longed offline states.

The design was created with extensibility in mind.
The conditions used for automation are based on JSON
string processing which makes them very flexible and
easy to understand. The gateway uses the widely pop-
ular MQTT protocol to communicate with the Cloud,
therefore it is not bound to a specific Cloud platform.
Thanks to the deterministic approach to reconnection
and resynchronization, states and configurations are
always in order. The ability to communicate and per-
form data analytics offline lowers latency and keeps
the gateway and the whole network functional even if
it disconnects from the internet.

This chapter talks about the Internet of Things and
some of the technologies that enable it. It describes
Cloud Computing, Edge Computing and the MQTT
communication protocol to provide the reader with
deeper understanding of some of the terms or phrases
used in this paper.

2.1 Internet of Things

The Internet of Things is a phrase that has been very
popular in the last decade but has been used to describe
many different ideas. A recent paper about the under-
standing of the Internet of Things [8] goes through
the evolution of this paradigm, from RFID-based Wire-
less Sensor Networks for telemetry gathering, data
acquisition and supervisory control, to moving away
from tag-centric solutions and towards providing sim-
ple objects with the capabilities to directly connect to
the internet and lastly to a service focused ideology
with Cloud Computing and huge amounts of collected
data. They also briefly talk about the emerging Edge
Computing a try to predict the future of the Internet of
Things. The definition the authors gave based on their
research is ”a conceptual framework that leverages on
the availability of heterogeneous devices and intercon-
nection solutions, as well as augmented physical ob-
jects providing shared information base on the global
scale, to support the design of applications involving at



the same virtual level both people and representations
of objects.”

2.2 Cloud Computing

As described in [9], Cloud Computing is an on-demand
computing model composed of autonomous, networked
IT resources. It enables organizations to leverage
internet-based, scalable, inexpensive and easy-to-use
pools of resources instead of having to maintain their
own datacenters. Cloud platforms often offer a sub-
scription based model that allows customers to only
pay for the resources they actively use. The Cloud’s
architecture can be split into several domains, the In-
frastructure as a Service that provides direct access
to hardware resources, Platform as a Service which
supplies development tools and administration plat-
forms for the hardware and Software as a Service that
delivers software applications that can be subsribed to.

2.3 Edge Computing

In [10], Edge Computing’s advantages are listed as
the option to process the massive data generated by
devices at the network edge instead of transmitting
them to the centralized Cloud. It can provide services
with faster responses and greater quality and can be
considered the future the Internet of Things infrastruc-
ture. They also describe the various approaches to
Edge Computing that are being implemented today.
Cloudlets, for example, are small-scale data centers
located at the edge of the internet. They consist of
resource rich computers providing powerful comput-
ing resources to nearby mobile devices with lower
latency. They can serve as a middle point between
the mobile devices and the Cloud. Mobile edge net-
working, on the other hand, is defined as a technology
that provides Cloud Computing capabilities at the edge
of a mobile network. This can be represented by ap-
plications running as a virtual machine on a powerful
mobile edge platform. Finally, Fog Computing aims to
distribute resources and services along the continuum
from the Cloud to things, using more powerful end
nodes where possible.

2.4 MQTT

MQTT is defined in [11] as a client-server publish/-
subscribe messaging transport protocol that is light
weight, open and ideal for Machine to Machine com-
munications and the Internet of Things because of its
small footprint. It runs over TCP/IP, communicates
through a broker application that provides one-to-many
message distribution and offers three qualities of ser-
vice. These are the QoS 0: At most once, that delivers

messages to the best efforts of the operating environ-
ment, QoS 1: At least once, where messages are as-
sured to arrive but duplicates can occur and QoS 2:
Exactly once. MQTT can be secured through TLS
with SSL Certificate exchanges between the broker
and subscribers/publishers or with WebSockets.

Several main goals were set for the design. It should
provide automation through an easy to understand and
extensible protocol, it should be as independent of
the Cloud as possible while at the same time making
use of the Cloud’s advantages, like remote communica-
tion and storage, and it should be able to automatically
reconnect to the Cloud and properly enter a synchro-
nized state after any kind of connection loss.

To achieve these goals, the design was inspired by
the Edge Computing paradigm. The most important
part of that is computing all automation at the edge of
the network. The automation scheme that was devised
manages to do this by storing conditions at the gate-
way and based on them analysing all received data
before passing it to the Cloud. Because of this, even if
the connection to the Cloud is severed, the gateway can
successfully keep controlling the network as needed.
The solution is described further in subsection 3.1.

Another aspect that needed to be looked into was
a mechanism that would prevent important data from
being lost. The created mechanism is based on mes-
sage buffering and was designed with customizability
in mind, in order to give users control over their data.
It was necessary to provide not only short term solu-
tions for networks with frequent disconnections but
also to take care of prolonged disconnected states in
cases where data history is of great significance and
the local storage is insufficiently large. The gateway
handles these cases by reducing the amount of stored
data through several different schemes that can be cho-
sen separately for each device. The buffer schemes are
discussed in subsection 3.3.

Furthermore, it was essential to maintain consis-
tency in device states between the Cloud and the gate-
way at all times while connected and to develop a de-
terministic way of synchronizing these states after
the gateway reconnects following a downtime. This
is achieved through several mechanisms described in
subsection 3.2 and subsection 3.3.

Lastly, to eliminate the inconvenience of not being
able to manually control devices while disconnected
from the Cloud, offline communication with a nearby
mobile phone was developed as well. For this purpose,
the gateway makes use of its WiFi and Bluetooth ca-



Data Storage
State Reports

A

Device Automation

Remote Commands ><
Device Management
Data History

Data Buffering

+
O

l Device Automation

Local Commands

Figure 1. Functionality while connected and disconnected

pabilities to communicate with and receive commands
from similarly enabled mobile phones. The result of
this design choice is that the only cases where internet
connection is absolutely necessary are the initialization
of the gateway itself and the adding and removing of
devices to and from the network.

To incorporate remote control, remote storage and
pave the way for possible extensions to the design,
the gateway application was envisioned with Cloud
connectivity from the get go. This was approached
by analyzing available Cloud platforms and making
sure the design is as portable between them as pos-
sible. That’s why the standard MQTT protocol was
chosen for gateway-to-Cloud communication and why
the gateway does not use any Cloud platform-specific
APIs.

Figure 1 shows the differences in functionality
between the connected and disconnected states.

3.1 Conditions

For the purposes of automation, a simple and extensi-
ble protocol was created utilizing the commonly used
JSON strings. JSON provides a structured format that
is readable by humans and is supported by many pro-
gramming languages used today. Every condition has
an owner, which is the device whose actions the condi-
tion is dependent on, a list of affected devices, the con-
dition itself and the command that will be executed
in case the condition is met. These JSON strings are
then stored as part of the owner’s state and every time
a device reports data, all the device’s conditions are
examined for any commands that need to be executed.

3.2 Reconnection

Since MQTT was chosen as the communication proto-
col between the gateway and the Cloud, it is necessary
to always maintain stable connections for every MQTT
client representing a device inside the network. When-
ever a client disconnects for any reason, a callback is
triggered, that takes care of checking if the correspond-

ing device is still alive and afterwards tries to refresh
the client’s connection. If the reconnection fails but
the gateway is still connected to the internet, the client
is marked by a background process that will period-
ically attempt to reconnect it at a later time. Finally,
internet connection losses are taken care of by a pro-
cess that listens to any connection changes that might
occur and, in the event of connection recovery, is able
to go through every MQTT client and reconnect them.

3.3 State synchronization and buffers

In order to avoid losing any important data, special
buffers were created specifically for telemetry devices.
These buffers feature several modes and are filled by
messages whenever they cannot be transmitted. As
soon as a client with a buffer reconnects, its buffer is
emptied. When that is complete, the gateway processes
the last command that was sent to the client through
the Cloud platform, performs any required changes,
reports the current device state and finally resumes
normal functionality for the client.

The buffers operate in three main modes with one
secondary mode. The main modes are HOLD, FIFO
and DYNAMIC, the secondary mode is VARIANT.
HOLD simply stores every message passed to it until
it is filled and rejects everything after that. FIFO, as
the name suggests, acts as a typical FIFO pipe and once
filled, starts discarding the oldest messages in favour of
new ones. DYNAMIC uses a time interval to space out
accepted messages after it is filled up for the first time.
When it becomes full again, it enlarges the interval by
a specified amount of time. The VARIANT secondary
mode can be applied to all the main modes and creates
spaces between stored messages by making sure every
pair’s stored telemetry differs by a specified minimal
value.

In order to verify the functionality of the system, sev-
eral experiments were performed in a controlled en-



Internet Communication

Google Cloud

Local Wi-Fi and Bluetooth
Communication

Mobile Application

Figure 2. Topology of the experimental network

vironment. These experiments included the gateway,
which was based on the Pico i.MX7 development kit
with the Android Things operating system with a USB-
KW41Z dongle for Thread communication, Google
Cloud, an Android mobile application and four end
devices using the KW41Z MCU inside custom-made
modules created specifically for this project. The de-
vices include a temperature sensor, a humidity sensor,
a ventilator and an RGB led light. The software for
the end devices was based on NXP’s Thread SDK and
the Android applications for the gateway and mobile
device, as well as several processing javascript scripts
running on the Google Cloud platform, were imple-
mented from scratch.

A condition for each of the sensors was set up.
The temperature sensor’s condition required the gate-
way to turn the ventilator on or off depending on a tem-
perature limit and the humidity sensor’s condition in-
structed the gateway to change the color of the RGB
led light depending on reported humidity. The condi-
tions were simple for the purposes of the experimen-
tation, however, in real world applications one could
have a single sensor control a wide rage of other end
devices simultaneously. One such example would be
a thermostat that manages different ventilators or AC
units and all of the heating inside a house.

First, the network was set up and left connected to
test full functionality. The outcome of this test was that
the mobile application could be used to control all end
devices both remotely and locally while the gateway
was also able to automatically control them according
to the configured conditions. All reported temperature
and humidity values were also stored in the Cloud and
readable in graphs inside the mobile application.

Next the internet connection of the gateway was
shut down. All subsequently reported data was still
being analyzed and acted upon according to the al-
ready configured conditions but instead of states and
telemetry being reported to the Cloud, the telemetry

was buffered and state changes only marked in the gate-
way’s storage. When the disconnection was detected
in the Cloud, all devices were marked as offline in
the mobile application. When using the local com-
munication, the devices could still be controlled and
new conditions could be added, but the data history
was not being updated. When using remote control,
the network was not affected at all.

Finally, connection was restored to the gateway.
The buffers were emptied before any new data was re-
ported, the last requested remote configurations were
received and processed and at the end of the reconnec-
tion flow, the current states were reported. The devices
were marked as online again and the system resumed
full functionality, with the buffered data reflected in
the data history graphs.

This paper researched and presented information about
network autonomy and automation in the Internet of
Things. It examined past and contemporary trends
in this area, its problems and potential solutions and
finally introduced the design and implementation of
a new solution used in a smart home model.

The solution designed as part of this paper provides
a simple yet effective condition schema that enables
automation of networks. It performs all automation at
the edge of the network and can be controlled locally
without the use of internet. Furthermore, it connects
to a Cloud platform to allow for remote control and
telemetry storage.

The contribution of this work is a proof of concept
model of a smart home that can be used to present
the advantages of the Internet of Things and the tech-
nologies of NXP Semiconductors. It provides a viable
solution to the overdependence of Internet of Things
on the Cloud and offers an extensible autonomous au-
tomation scheme.

The resulting work can be further improved by
adding machine learning capabilities by making use
of the Cloud. Additional conditions can also be added
to support a wider variety of devices. Since the de-
sign does not use vendor specific libraries, it could
also be extended with connectivity to different Cloud
platforms.

I would like to thank my supervisor Ing. Petr Musil
and my colleague Ing. Karel Povalac, Ph.D. for their
assistance and technical advice.



[1]

(2]

[4]

[5]

[6]

[8]

[9]

[10]

A. Botta, W. de Donato, V. Persico, and
A. Pescapé. On the integration of cloud com-
puting and internet of things. In 2014 Interna-
tional Conference on Future Internet of Things
and Cloud, pages 23-30, Aug 2014.

S. M. Babu, A. J. Lakshmi, and B. T. Rao. A
study on cloud based internet of things: Cloudiot.
In 2015 Global Conference on Communication
Technologies (GCCT), pages 60-65, April 2015.

Klint Finley. Nest’s hub shutdown proves
you’re crazy to buy into the internet of
things. Wired, May 4 2016. [Online; vis-
ited 2019.03.10]. Retrieved from: https:
//www.wired.com/2016/04/nests—
hub-shutdown-proves—-youre—-crazy-—
buy-internet-things/.

Fredric Paul. What happens when an iot imple-
mentation goes bad? Network World, November
21 2017. [Online; visited 2019.03.10]. Retrieved
from:
com/article/3238004/internet—of-
things/what-happens-when-an-iot-
implementation—-goes—-bad.html.

Amir-Mohammad Rahmani, Nanda Kumar
Thanigaivelan, Tuan Nguyen Gia, Jose Grana-
dos, Behailu Negash, Pasi Liljeberg, and Hannu
Tenhunen. Smart e-health gateway: Bringing
intelligence to internet-of-things based ubiqui-
tous healthcare systems. In 2015 12th Annual
IEEE Consumer Communications and Network-
ing Conference (CCNC), pages 826-834. IEEE,
2015.

Xiang Sun and Nirwan Ansari. Edgeiot: Mobile
edge computing for the internet of things. /EEE
Communications Magazine, 54(12):22-29, 2016.

Hubitat elevation is a powerful home automa-
tion platform. [Online; visited 2019.03.10].
Retrieved from: https://hubitat.com/
pages/home—-automation—-features.

Luigi Atzori, Antonio lera, and Giacomo Mora-
bito. Understanding the internet of things: defini-
tion, potentials, and societal role of a fast evolv-
ing paradigm. Ad Hoc Networks, 56:122—140,
2017.

Qusay F Hassan. Demystifying cloud comput-
ing. CrossTalk: The Journal of Defense Software
Engineering, 24, 01 2011.

Yuan Ai, Mugen Peng, and Kecheng Zhang.
Edge computing technologies for internet of

https://www.networkworld.

things: a primer. Digital Communications and
Networks, 4(2):77 — 86, 2018.

Mqtt version 3.1.1. OASIS Standard, October 29
2014. [Online; visited 2019.03.11]. Retrieved
from: http://docs.oasis—-open.org/
mgtt/mgtt/v3.1.1/0s/mgtt-v3.1.1-
os.pdf.


https://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/
https://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/
https://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/
https://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/
https://www.networkworld.com/article/3238004/internet-of-things/what-happens-when-an-iot-implementation-goes-bad.html
https://www.networkworld.com/article/3238004/internet-of-things/what-happens-when-an-iot-implementation-goes-bad.html
https://www.networkworld.com/article/3238004/internet-of-things/what-happens-when-an-iot-implementation-goes-bad.html
https://www.networkworld.com/article/3238004/internet-of-things/what-happens-when-an-iot-implementation-goes-bad.html
https://hubitat.com/pages/home-automation-features
https://hubitat.com/pages/home-automation-features
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

	Introduction
	Theoretical Background
	Designing an Autonomous System
	Experiments
	Conclusions
	References

