BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Transparent Encryption with Windows Minifilter
Driver

David Porizek*

Abstract

The goal of my work is to implement a solution which would be able to extend a Data Loss Protection
(DLP) system by preemptively protecting any data which are about to leave an Endpoint. This
paper aims to describe the approach that has been used in order to achieve this type of data
protection. | have chosen to implement the application using a Windows Minifilter Driver Framework,
which provides developers with an interface to directly filter, modify, and create requests sent to
file systems (FSs). This approach also inherently provides better security than user mode (UM)
solutions, since the framework runs fully in kernel mode (KM) and utilizes security elements that are
already in place to protect the Windows Kernel. The application is finished and has been already
briefly tested with Safetica DLP. It is able to seamlessly protect user-specified files and provide
the user with a plain-text view of said files despite them being stored in an encrypted form on the
disk. There are certain limitations to this approach, which will be described in section 3, but the
solution attempts to overcome them in the best possible way. On top of extending DLP systems’
functionalities, this work should provide an insight into transparent encryption and more generally,
explore the possibilities of a kernel driver when it comes to modification of file views. To a reader, it
should present a general idea of what an implementation of this solution entices, a clear starting

point for his/her own work, and suggestions how to further improve it.

Keywords: Transparent encryption — Minifilter driver — Kernel mode

Supplementary Material: N/A

*xporiz03@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

This project approaches the encryption and DLP ide-
ology from a different angle. Instead of preventing
sensitive data leaks and focusing on multiple different
channels through which the data could escape from an
endpoint, it preemptively protects such data and makes
sure that in case of a leak, the leaked data are acces-
sible only in their protected form outside the original
endpoint.

As it was mentioned earlier, the main goal of this
work is to extend existing DLP systems and provide
a new functionality to the,. The core part of this project
is the transparent encryption logic. It can be further
separated into two parts — an application providing the
transparency and a module securing files by encryp-
tion. There should be an interface, which the DLP

system can use to configure the solution. Additionally,
users might need to access the protected data without
having the option to install a driver, such cases should
be taken into account. Furthermore, implementing
the encryption logic as an independent module could
prove beneficial for DLP systems to fulfill their secu-
rity requirements for external solutions.

I decided to analyze multiple widely known DLP
systems which provide a similar approach to the data
protection. Since there is a number of such DLP sys-
tems, I rather focused on analysing their encryption
features from a higher level, for the sake of this paper.
The approaches can be summarized into three differ-
ent categories. Unfortunately, majority of the existing
solutions are commercial products, therefore informa-
tion that can be obtained about them is limited to only

http://excel.fit.vutbr.cz
mailto:xporiz03@stud.fit.vutbr.cz

public white-papers and other materials released by
them. Nevertheless, it is still possible to gather valu-
able information and at least understand the pros and
cons of each of the approaches. They will be described
in greater detail in the following section 2.

In my case, I was able to cooperate closely with
Safetica to deliver them a solution, which is able to
provide the file protection mentioned in previous para-
graphs. Specifically, my solution implements a file
system minifilter driver, which loads itself into the file
system driver (FSD) stack and modifies requests of
files and responses to these requests coming to/from
a file system. This driver performs the transparent en-
cryption on-the-fly. It also focuses on the extensibility
of the encryption logic, and utilizes security features
that are already in place to protect the Windows ker-
nel. While the the idea of the transparent encryption
is fairly simple in itself, the driver solution must mind
Cache Manager (CM) and Virtual Memory Manager
(VMM) on top of the file system and adhere to their
requirements to make sure it does not break the flow
of either of them.

The final solution is able to transparently protect
files that have been specified as sensitive. It also pro-
vides a UM application to decrypt any of the protected
files, in cases where the user is unable to install the
driver. This enables it to work as a stand-alone solution
as well as in a conjunction with a DLP system.

As it was mentioned in the introduction, there is a num-
ber of DLP systems, which provide a similar approach
to the file security as in this work. Since these systems
are usually commercial products, obtaining informa-
tion about the specifics of their implementations is
unlikely. Rather than discussing each of the DLP sys-
tems separately, in this paper, I will summarize the
approaches into three different groups and describe
them. The approaches have been summarized as fol-
lows: full-disk encryption, server-based proxy encryp-
tion, file-based transparent encryption.

Full-disk encryption works just as the name sug-
gests — it encrypts the whole disk during the initializa-
tion phase and then works in the background to encrypt
any data that are being copied to the disk and to de-
crypt data copied from the disk. While this is certainly
a complete solution, it lacks some useful features. It
is not possible to encrypt only few selected files. Al-
though, it is possible to encrypt a folder instead of the
whole disk, it is still not possible to mix encrypted and
plain-text files in this folder. Usually, it is required that
an encrypted unit (disk or folder) is mounted in order

to access the decrypted data. On the other hand, it is
easy to setup and once the initialization is completed,
it guarantees protection of all files inside the encrypted
unit.

Server-based proxy encryption utilizes a proxy
server, which is located at the company’s network node
and functions as a gateway for the network. This al-
lows the server to filter and analyze all communication
that is leaving company’s premises. The server is then
able to react to sensitive data leaving the premises, for
example, by encrypting said data or by notifying an
administrator. This approach usually requires a hard-
ware component in order to work properly, although
installing such component is very simple most of the
times, it may be a disadvantage for some companies,
since they have to physically obtain the component
first. A disadvantage to this approach is the inabil-
ity to protect any data copied to an external storage.
This introduces a security risk, which is impossible to
solve with just this approach alone and may require an
additional solution, to protect local data.

Lastly, there is the file-based transparent encryp-
tion approach. In its core, this approach provides
user with an illusion that he/she is working with unen-
crypted files, while in the background, these files are
stored in an encrypted form on the disk. This is similar
to the full-disk encryption, but the main difference is
that the encryption is performed Just-in-Time (JIT)
therefore there is no big overhead required, before it
is ready to be used. It also maintains the protected
state of files even when they are being moved across
different devices. The main disadvantage with this ap-
proach is the complexity of an implementation. This,
of course, depends on the chosen design. Implement-
ing transparent encryption inside UM provides more
flexibility, but if utilizing KM security features is our
goal, there are only two design options. One of them
is file system filter driver, that would modify any in-
coming requests to satisfy the requirements of the file
system, the CM, and the VMM, which is the design
I chose for my work. The other design is based around
implementing a full scale cache and memory manage-
ment in the driver. This would require the driver to
assume these functions from the file system and be-
come independent on it. This approach is obviously
exponentially more complicated, since the function-
ality would be comparable to a full-scale file system.
But it would solve issues with obtaining cache locks
and flushing the cache mentioned in section 3.

Based on the analyzes and research briefly described
in section 2, I decided to implement a transparent en-
cryption with the filter driver. The following section
describes the chosen approach and discusses its advan-
tages and disadvantages in greater detail.

The implementation consists of two core parts —
the driver, which implements the transparency, and
the encryption module. There is also a graphical user
interface application (GUI), which is implemented in
UM and allows users to decrypt any file even if they
lack administrator privileges (this issue will be further
discussed later in this section).

The driver is implemented using the Windows
Minifilter Framework ' and therefore the language
used is C. The main advantage of a minifilter driver
lies within its high abstraction from system internals
compared to other types of drivers. It can filter requests
made towards a disk without having to worry about
power management of said disk while also being able
to use a full set of functions defined for filter drivers
within the Minifilter Framework. It can also access and
modify certain parameters of requests and responses
made towards disk, also called Input/Output Request
Packets (IRPs).

Modification of the IRPs’ parameters allows the
driver to change a file view that is being presented
to the user and thus is the basis for the transparency
logic. Therefore, the user is seamlessly working with
decrypted data, although it has been already secured
by the driver’s encryption logic. The file view modifi-
cation is described in detail in section 4.

The encryption logic is implemented as a separate
module inside a library. This allows anyone to adjust
the encryption algorithms to suit their needs. It is also
possible to change the format which defines, how the
file is stored on a disk. By default, the driver uses AES-
256 encryption. The encryption module is described
further in section 5.

Implementing the transparent encryption as a driver
provides number of advantages. A Windows driver
has to fit within the interface defined by Windows for
drivers and thus it utilizes all the KM protections in
place to secure native drivers. Generally speaking,
a driver implementation provides a better performance
than a UM application, because the driver is allowed
to work in a highly elevated mode, bypassing majority
of security checks and verifications imposed onto UM
applications.

Furthermore, the transparent encryption approach

Thttps://docs.microsoft.com/en-us/windows-
hardware/drivers/ifs/filter-manager-concepts

provides a way to protect only specific files within
a folder. This falls well within the usual DLP work-
flows, where sensitive data are detected and a prede-
fined operation is issued as a response, for example,
alerting the administrator or encrypting the file. The
way the encryption module is implemented, allows
DLP systems to change any of the algorithms used if
they deem it necessary.

On the other hand, the biggest disadvantage of this
approach is that it relies on implementation details of
FSDs and will likely misbehave on other file systems
which it was not adjusted for. That being said, it would
be possible to modify the driver behavior in order to
work properly on other file systems as well. The driver
has been tested on NTFS and FAT32 file systems and
works as expected.

There were two issues with this approach, which
had to be overcome. The first has been hinted earlier in
this text — the requirement of administrator privileges.
A Windows driver can be installed on a computer only
with an administrator elevated account. This is usually
not an issue for DLP systems, since the installation
is done by the company’s administrator. But it would
be useful to be able to access the protected files on an
external computer, where the administrator privilege
may not be easily acquirable. For this reason, the
solution provides a GUI application, which is able
to access files previously secured by the driver. This
obviously breaches the transparent approach, but it is
meant rather as a last-resort tool.

The second issue is caused by “lieing” to CM.
When a request is made towards a disk, for exam-
ple, to read a file’s content, the file system fills in
the information about the requested file and sends the
information back alongside with the requested file’s
content. This also means, that it has to initialize the
file in CM and VMM. Consequently, the FSD becomes
the owner of locks issued for access to the cached data
of the file. This complicates our transparent approach,
because we need to access the cache of files we are
protecting in order to flush it and initialize it again
with modified parameters. This is required in cases
where the driver was not loaded fast enough and the
file has been already cached in its unmodified state.
The issue becomes almost nonexistent by requesting
the FSD’s locks before flushing the cache and making
sure we will be able to actually obtain them, by can-
celling the current file request and issuing a new one
for any file we haven’t filtered yet. While, in theory,
the issue might not be fixed completely, I have not
encountered it during my tests. It would also pose only
a small inconvenience to the user, since he/she would

¥
X

Transparent

Encryption Minifilter
Driver

User-mode
Configurating

110 Manager | |
Application

Virtual Memary
Manager

A

File system Drriver

Y

VAR

Cache Manager

Secondary
Storage Device,

Figure 1. Figure displays a flow of I/O request as
well as the position of the driver in this exchange.

Kernel-mode

be presented with the secured content of a file he/she
is trying to access and to fix the issue he/she would
need to restart the computer.

Modifying the file view is a fundamental logic in
a transparent encryption approach. The main idea be-
hind changing the file view is to provide an illusion that
a user is currently working with normal files, while, in
fact, they have been already modified by the driver (for
example, encrypted). It requires the driver to modify
a number requests and responses made towards a disk
to achieve acceptable results. Figure 1 shows all par-
ticipants in a file request as well as driver’s position in
this communication. The information in the following
section has been gathered from the book [1].

When modifying a file view, there are two impor-
tant participants who we have to indirectly communi-
cate with, in order to modify the view properly. These
participants are the CM and the VMM. The cache man-
ager allocates and caches the memory that is accessed
or is about to be accessed. A file is usually cached
when it is first accessed by a handle. This can happen
even before a user reads any of the file’s content, be-
cause the system may open the file’s handle to query
some details. This presents a fairly big complication,
because requests to read a file’s content can be satis-
fied from cache, bypassing the file system driver stack,
thus bypassing the minifilter as well. Therefore, the
driver must preemptively store plain-text data when

the cache is crated for a file, otherwise it would not
be possible to read file’s content when satisfying the
requests from cache. Since a minifilter driver is not
directly responsible for managing the file’s context in
the system, it cannot directly contact the CM and must
rely on the file system to contact the CM for him/her.

Moving onto the VMM. VMM manages memory-
mapped files (MMF). There is a similar issue as with
the cached memory, that is, if the memory mapped files
become initialized without the minifilter’s interference,
the user would be able to only access the encrypted
data. Instead, the driver has to detect the MMF initial-
ization process and provide the VMM with decrypted
view of the file, which consequently becomes mapped
and accessible to the user.

Even though the text mentions communication
with the CM or the VMM, none of the communication
is done directly with the relevant manager as described
in the previous paragraphs. Every request has to go
through the file system first and then the file system
decides whether it needs to communicate with either of
them. The minifilter is able to influence this communi-
cation by modifying requests it sends to the file system
(Figure 1 — step 3). This modification needs to be done
in such a way, that the file system does not reject the
request (for example, with an END_OF_FILE status
when the driver modifies the file’s size), but rather
forwards or completes the request as planned.

There are three different file size values which
a FSD recognizes and keeps for each file. All of these
values are utilized during a file request in some way,
but to provide a modified file view the driver has to
modify only one of them —FileSize.

The three different file size values:

e The AllocationSize is a value which re-
flects the actual on-disk space reserved for the
file. It is a multiple of the minimum allocation
size of the file system which manages the stor-
age where the file resides.

e The FileSize value defines the end-of-file
(EOF) mark. All read operations return EOF
when attempting to read beyond this size.

e The validDataLength represents the amount
of data stored within the file.

The encryption works by encrypting the file’s content
and storing relevant information in a header which is
appended to the file. This allows the driver to work
without the need to store any information about the
current session in its memory and to work out-of-the-
box.

» Encrypted by Content
Encryption Key

—

o 32 288 416
Encryption -

Header
Identificatior

Content Encryption Key Content Checksum Content

Encrypted by user-defined or
company-defined key

Figure 2. Figure describing the encryption header
structure.

Figure 2 describes the structure that is used for
the encryption header. The header begins with a fixed
length identification which is there to help the driver
distinguish its encrypted files. The encryption key is
generated by the driver for every encryption request.
The user/company defined key is used to encrypt the
whole header that is appended and has to be obtained
externally. It can be obtained either by directly calling
the driver’s interface or by using the provided external
application to set a user password. It also contains
a simple checksum to verify, whether the header has
been altered.

As for the algorithms used, by default the solu-
tions uses AES-256 and MDS5 for checksum, but the
algorithms can be easily changed by compiling a dif-
ferent encryption library (as long as all the required
interfaces of the driver are provided). The majority
of other encryption based DLP solutions tend to use
AES-128 or AES-256. Based on this and the fact that
AES-192 and AES-256 are deemed strong enough by
the National Security Agency (NSA) to protect TOP
SECRET information [2], these algorithms should be
secure enough to be used as default ones in the final
solution.

This paper summarized and described the approach
which was used to implement the transparent encryp-
tion inside Windows kernel. The implementation con-
sists of two core parts — the transparency logic and the
encryption module. While the transparency logic is
implemented as a minifilter Windows driver, the en-
cryption module is a library, which can be potentially
swapped to adjust the encryption algorithms and/or the
encryption header.

The solution has been tested and works properly
on NTFS and FAT32, either closely with Safetica or as
a stand-alone application. It provides all the necessary
interfaces to properly configure it and use it.

The work explores possibilities of Windows KM
and proposes a transparent encryption solution, imple-
mented as a minifilter driver. While there are some
limitations to this approach, the solution makes the

best effort to work around them.

This work could also be treated as an introduction
to file view modification by using Windows Minifilter
Driver Framework. Despite the fact, that the solu-
tion may not be the most optimal, it should provide
the reader with enough information on the subject, to
properly understand all the advantages and pitfalls of
such project.

I would like to use this work as a basis for my
future project, where I would focus on implement-
ing a complete file system driver, which would take
over the cache and memory management, thus, heav-
ily improving the extensibility and the usability of the
project.

I would like to thank my supervisor Doc. Dr. Ing.
Dusan Kolar for his help and multiple consultations.
I would also like to thank Ing. Martin Drab for his
guidance and advice with Windows kernel develop-
ment.

[1] Rajeev Nagar. Windows NT File System Internals:
A Developer’s Guide. O’Reilly Media, 1997.

[2] CNSS Secretari. CNSS Policy No. 15, Fact Sheet
No. 1,2003. [Online].

	Introduction
	Summary of Different Approaches
	Proposed Solution
	Modified File View
	Encryption Module
	Conclusions
	References

