
9
http://excel.fit.vutbr.cz

rlite: building scalable networks the recursive way
Michal Koutenský*

8 2

P

a

P SP

L

k

i

w

M S

A

0

p c

LI

E

l

S

r

R

q

p t

o

h

I

1

o

t

e r

.

T

e

k

P

i

i

i

L

n

n

L

n r

t

p

N

G

S

y al

T

c

s

a

s o

c

A B

C

DIF1
A-B
B-C D

A B

C

DIF2
A-B
B-C
A-D

DIF1

Abstract
The purpose of this paper is twofold — first, to showcase my contributions to the rlite networking
stack, and second, to inform readers about the existence of Recursive InterNetwork Architecture
(RINA) and to serve as a quick and easy to read introduction to the architecture and its capabilities.
It is well documented that the TCP/IP network architecture suffers from numerous deficiencies and
does not meet the demands of modern computing. A great number of these issues are structural
and cannot be properly solved by making adjustments to existing protocols or introducing new
protocols into the stack. RINA is a clean slate architecture whose aim is to be a more general,
robust and dynamic basis for building computer networks. I have extended the rlite implementation
with support for policies. With this framework in place, it is possible to have multiple behaviours
of components (such as routing), and change between these during runtime. This additional
flexibility and simple extensibility greatly benefits both production deployment scenarios as well as
research efforts. As policies are crucial for RINA, supporting them is an important milestone for the
implementation, and will hopefully foster adoption and accelerate development of RINA as a viable
replacement for current Internet.

Keywords: network architecture — RINA — rlite

Supplementary Material: GitHub repository — Pouzin Society

*xkoute04@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction1

The modern computing landscape and its requirements2

vastly differ from the state of things in early 1970’s,3

where TCP/IP has its roots. Although there has been4

considerable innovation on top of the Internet, Internet5

itself has seen very little change since late 1970’s. [1]6

It is well documented that the TCP/IP architecture7

suffers from many problems, which are often structural8

and cannot be properly solved by making adjustments9

to the protocol stack. These problems aren’t new. In10

fact, some (such as the inability to support proper11

multihoming) have been known since the ARPANET.112

1The Tinker Air Force Base asked for redundant connection in

There exist two reasons for why that is the case. 13

As the primary goal was to build a working packet 14

switched network, some known hard problems (like 15

getting naming and addressing right) were given lower 16

priority and left for later. The original ARPANET for 17

example used a simple enumeration of IMP2 ports for 18

host addresses. At the same time, not much was known 19

about such networks and how they operate. Further 20

research and real world experience was needed to be 21

able to come up with comprehensive solutions. 22

Therein lies the core problem of the Internet. Un- 23

predictably fast rate of real world adoption and growth 24

1972.
2Interface Message Processor, the “router” used in ARPANET.

http://excel.fit.vutbr.cz
https://github.com/rlite/rlite
http://www.pouzinsociety.org/
mailto:xkoute04@stud.fit.vutbr.cz


meant that these issues never got addressed again, as25

things were working well enough for the time being,26

while the cost of doing any sort of radical changes to27

the architecture kept increasing.28

The fact that the architecture is insufficient and29

broken can be plainly seen in the layer model. Tradi-30

tionally, it is described as a five layer model. However,31

at this point, five layers only exist in the simplest sce-32

narios and networking textbooks. With introduction33

of technologies such as 802.1q, MPLS, GRE, IPsec,34

LISP or TLS, the protocol stack not only increases35

in size, but has a dynamic number of layers, as new36

protocols are inserted wherever convenient. This is37

a clear sign of incomplete architecture and a stopgap38

approach to solving problems.39

Surely, one of the biggest changes of the past thirty40

years is the introduction of IPv6. However, its adoption41

leaves a lot to be desired. It has been over 23 years42

since the original IPv6 RFC [2] was published, and43

according to statistics from Google [3], around 25% of44

their customers access their services over IPv6, while45

five years ago the number was less that 5%.46

IPv6 was meant to solve some of the issues of the47

Internet, chief among them address space exhaustion,48

but brought with it its own set of issues, the migration49

process itself being just one of them. It failed to ad-50

dress the problem of naming entities in the network in51

any significant way, mainly restricting itself to increas-52

ing the size of the address space. Many protocols used53

IPv4 addresses directly, or were designed to only carry54

IPv4, and thus, they had to be reworked to work with55

IPv6.56

The Loc/Id separation protocol [4] tries to decou-57

ple the semantics of identifying a node and locating a58

node within the network. [5] While this does improve59

the situation slightly, it only addresses the symptom,60

not the problem. The naming scheme in TCP/IP is61

incomplete. IP address does not name a node, it names62

an interface, just like a MAC address3 does. Both have63

a global scope, with MAC space being flat and IP space64

being hierarchical. In practice, due to address space65

fragmentation, even this does not hold, and neighbour-66

ing interfaces might have radically different addresses.67

There exist no application names or node addresses468

within TCP/IP.69

Not only have our requirements and use cases70

changed, but so has our knowledge about computer net-71

works. Decades of real world experience have given72

us additional insight into the nature of networks and73

3As it does not help with locating the interface in any way, it
might be more precise to call it a name rather than an address.

4Host names are not topological. It is not possible to e.g. route
on them either.

their guiding principles. RINA aims to utilize this 74

knowledge to be a more complete theoretical model 75

that allows network designers to build robust, secure, 76

scalable and manageable networks. 77

As RINA only defines a theoretical model, it is 78

necessary to implement it to reap practical benefits. 79

rlite is such an implementation. As an open source 80

project, with focus on robustness and clean design, 81

it can already be used to run simple RINA networks, 82

whether directly over Ethernet or WiFi, or as an overlay 83

network over TCP or UDP. It provides an easy way to 84

extend its behaviour with support for runtime policies 85

for all of its components, giving network designers 86

great flexibility in creating solutions that strictly fit 87

their requirements. 88

My work focuses on policies, which are a critical 89

component of the architecture. The diversity of operat- 90

ing environments and user requirements for computer 91

networks mean that there is no one-size-fits-all solution 92

to many problems — it is always a series of trade-offs 93

fitting a particular scenario. [6] This understanding 94

is built into the architecture on an more fundamental 95

level than in TCP/IP. Instead of interchangeable proto- 96

cols, the logical components themselves have dynamic, 97

configurable parts that can be switched as needed. 98

I have implemented a framework for registering 99

and switching policies. This allows network admin- 100

istrators to tune the behaviour of the network to fit 101

their requirements. Likewise, it is beneficial for re- 102

searchers, as it’s easy to introduce new behaviour into 103

the network. The policies can be switched and ad- 104

justed during runtime, which makes it very convenient 105

to reuse the same network when running experiments, 106

without additional reconfiguration or patching. 107

The structure of this paper is somewhat unconven- 108

tional, as the first two sections serve to introduce the 109

reader to RINA in a organic and approachable man- 110

ner.5 The first section could be considered transitional, 111

in which we explore the nature of network architec- 112

tures and layers. Likewise, it contains some criticisms 113

of current networking, to illustrate why a paradigm 114

shift is needed in the first place. The second section 115

builds on the concepts introduced in the first one to 116

present and describe the RINA layer model and how it 117

ties together. The third section addresses rlite and the 118

policy framework therein, followed by a conclusion 119

that summarizes the paper’s contents. 120

5Unfortunately, this paper would make little sense to the reader
without this knowledge. Some compromises therefore have to be
made, to present everything within this limited space.



2. From a protocol stack to a recursive
structure

121

There are two well known models for how computer122

networks are structured — the OSI model [7] and TCP/IP6123

[9, 10]. Most undergraduate students of computer sci-124

ence will (hopefully!) come into contact with these.125

However, due to the dominance of TCP/IP in real-126

world deployments, there is usually not much time127

spent on explaining OSI and how it differs from TCP/IP.128

How do OSI and TCP/IP differ? A common de-129

scription might look as such:130

“OSI is the seven layer model and TCP/IP is the131

five layer model, and we use TCP/IP because the Ses-132

sion and Presentation layers were deemed to serve no133

practical purpose.”134

This kind of answer is wholly insufficient for the135

purposes of this paper, so let’s briefly go through some136

history. Aside from the details of the models them-137

selves, there are additional questions that should be138

considered. Why are the models layered? What is the139

purpose of the layers? How did the layers in the model140

arrive to be?141

Andrew Tanenbaum’s textbook on computer net-142

works [8] provides come clues to the differences be-143

tween the models.144

It claims that one of OSI’s biggest contributions145

is the strict distinction between services, interfaces146

and protocols. This roughly corresponds to a object-147

oriented understanding of layers, and allows to easily148

replace protocols used in the layers. TCP/IP, on the149

other hand, did not originally make this distinction150

explicit, which results in some of the problems outlined151

above.152

The OSI model was created before the protocols153

(and is thus protocol-agnostic), TCP/IP after. In a very154

real sense, the TCP/IP model is just a description of the155

protocol stack. The protocols fit the layers perfectly;156

the issue is that the model fits only those protocols.157

With the addition of a new set of protocols into the158

(TCP/IP) stack, a new model is required to describe it.159

To further complicate the problem, a lot of proto-160

cols in TCP/IP depend on certain protocols being in161

place in the stack under them7. Modern solutions and162

research efforts often breach the layer boundary8, jus-163

tified by pragmatism, seeking more information about164

network state and fine-grained control. Viewing layers165

as objects, such dependencies on private behaviour166

instead of communicating through well-defined public167

6Often, a hybrid OSI-TCP/IP model is used, as seen in [8]
7This fact is even reflected in the name after all.
8Think an application accessing TCP window size directly and

making decisions based on that.

interfaces goes against all good software engineering 168

practices. 169

We have established that a layer is an object pro- 170

viding services to the layers above. What functions are 171

necessary for network communication? How did their 172

division into layers come to be? 173

A lot of inspiration was taken from operating sys- 174

tems and the body of research work done in this field. 175

Network communication is interprocess 176

communication, and nothing but IPC. 177

The end goal of all network communication is for 178

two application processes to communicate. There ex- 179

ists a common set of operations required for IPC to 180

happen — locating the other process, allocating com- 181

munication resources, etc. The crucial difference is 182

whether these happen within one processing system or 183

are distributed. For networking communication, there 184

needs to exist a distributed facility providing these 185

services to the participating processes. In an ideal 186

scenario, the end process does not know whether it is 187

communicating within one processing system or over 188

a network, and does not care about this fact either. 189

Both OSI an TCP/IP attempt to distribute the re- 190

quired functions between layers and create a hierarchy. 191

As we can see, OSI did not get it right; the Session 192

and Presentation layers are infamously never used in 193

practice. However, on closer inspection, TCP/IP did 194

not get it right either — the protocol creep in the stack 195

is a de facto layer creep. (See figure 1.) 196

8 2

P

a

P SP

L

k

i

w

M S

A

0

p c

LI

E

l

S

r

R

q

p t

o

h

I

1

o

t

e r

.

T

e

k

P

i

i

i

L

n

n

L

n r

t

p

N

G

S

y al

T

c

s

a

s o

c

Figure 1. The TCP/IP model with other commonly
used protocols. These new protocols do not fit into
any particular layer, they exist on layer boundaries,
being de facto new layers themselves.

Furthermore, a lot of functions are repeated in the 197

layers, or follow similar patterns. The data link layer 198

is split into Media Access Control (MAC) layer and 199



Logical Link Control (LLC) layer. MAC provides mul-200

tiplexing and flow control for the physical medium.201

LLC provides multiplexing and flow control for the202

logical link. Are not multiplexing and flow control203

responsibilities of the transport layer? Does UDP pro-204

vide flow control?205

It appears that division into layers based on func-206

tion was not the right model. All layers provide all207

functions, although a particular layer in a particular208

network might not require all of them. What makes209

one layer distinct from another is the scope of their210

shared state.211

There exists only one layer, and it recurses.212

3. Untangling the recursive architecture213

We have arrived at some interesting insights in the214

previous section. The question now becomes: can215

a comprehensive architecture be created using this216

approach?217

The Recursive InterNetwork Architecture (RINA),218

as well as the insights from previous section (and much219

more) were described in John Day’s Patterns In Net-220

work Architecture: A Return to Fundamentals. [1]221

In many ways, it signifies a radical departure from222

networking as understood now. The documents de-223

scribing a reference model number almost a hundred224

pages altogether. [11] It is impossible to fully cover it225

within the limited space provided. This chapter will226

merely try to familiarize the reader with the main con-227

cepts and overall structure.228

As stated previously, there is only one layer, and229

it recurses. First, let’s introduce Distributed Applica-230

tion Facility. It consists of two or more Application231

Processes which exchange information and maintain232

shared state. [12]233

A layer is a specialized version of the DAF, a Dis-234

tributed IPC Facility. A DIF is a DAF where the APs235

do IPC. It provides IPC services to APs of other DIFs236

via an API. An AP that provides IPC is called an IPC237

Process.238

The lowest DIF is the link. Two neighbouring239

IPCPs, A and B, which are directly connected, can240

maintain shared state and exchange information.241

An (N+1) level common DIF named DIF1 can be242

created over this (A-B) link DIF. A neighbour C, who243

shares a common link with B, can join this DIF1, by244

utilizing the (B-C) link DIF IPC services of B, such as245

having B relay necessary messages to A over its (A-B)246

DIF.247

This can scale indefinitely.9 If A is a member of248

9There are physical constraints, but the architecture itself

A B

C

DIF1
A-B
B-C

Figure 2. View of the DIFs in the network. An
overlay DIF exists over the link connections, allowing
all three nodes to communicate with each other.

another level DIF, C can join this DIF as well, since it 249

can now utilize A’s services over the common DIF. 250

D

A B

C

DIF2
A-B
B-C
A-D

DIF1

Figure 3. Two non-link DIFs. A and D use the link
DIF to join DIF2, while C joins by using its
connection with A over DIF1, as it is not a direct
neighbour with any member.

As each DIF has limited scope, so does its shared 251

state. The practical implication of this is that addresses 252

are unique and meaningful only within a DIF. There 253

is no global address space in vein of IP, as it is not 254

needed. The resembling network is a true internet, not 255

a catenet10. The size of the address space can be bound, 256

and each DIF can use differently structured addresses 257

that properly reflect the topological information. 258

The mappings between (N) and (N-1) level DIFs 259

are analogous to logical and physical address spaces. 260

Routing is done within a layer (and for each layer), and 261

based on the next hop a suitable (N-1) DIF is picked. 262

Thus, an IPCP can change the (N-1) Point of Attach- 263

doesn’t impose any.
10The Internet is not an internet.



h

C

1

F

P

B

:

ic

A C

a

IF

A B

D

D

2

s

D A

D

y l:

I

C

:

Figure 4. Network graphs showing a) the physical
connections between nodes b) the logical connections
as known to DIF1 and c) DIF2 respectively.

ment without disturbing its (N) level communication.264

As such, mobility and multihoming11 are naturally265

supported within the architecture.266

Each AP has a global Application Process Name,267

allowing uniquely referring to APs by their name, with-268

out using node addresses. This dynamic mapping al-269

lows applications to have all the benefits described270

above regarding mobility.271

The IPCP consists of various building blocks pro-272

viding different services. Each of these consists of273

mechanisms and policies. Mechanisms are the static,274

built-in components, whereas policies are variable and275

change from use-case to use-case. An example of a276

mechanism might be sending of packet acknowledge-277

ments, a policy describes how and when are ACKs278

sent. This is an extremely powerful design decision279

that gives network designers great freedom and exten-280

sibility to design the network in a way that is suitable281

for the operating environment and the requirements282

imposed by both applications and e.g. company poli-283

tics.284

To illustrate with an example, the Flow Allocator285

component is responsible for handling requests for al-286

location of flows, as the name suggests. In TCP/IP,287

such requests are always accepted. By utilizing poli-288

cies, the network designer can support and enforce a289

wide variety of use-cases. A policy can be made to290

reject the request if there does not exists a path from291

source to target within the network which has a capac-292

ity of at least X Mbps. Another policy could behave293

differently based on the time of the day, to handle busy294

and calm hours. It could take into account the amount295

of flows currently allocated by the requester, or the296

total bandwidth used, or any other information known297

11Which are the same thing.

to the network. 298

4. Modern policy-based networking on
your Linux 299

rlite is one of several existing RINA implementations. 300

It is an open-source project started by Vincenzo Maf- 301

fione, licensed under LGPLv2, with the goal of cre- 302

ating a simple, performant and production-ready im- 303

plementation. It targets GNU/Linux systems as the 304

platform, as some parts exist as kernel modules. 305

In its current sate, rlite supports all the function- 306

ality required for basic network communication, such 307

as: 308

• Arbitrary stacking of DIFs 309

• Dynamic DIF enrollment 310

• Flow and retransmission control 311

• Inspection tools to query status information 312

• Implementation of the CDAP protocol for appli- 313

cation communication 314

• Ability to run over legacy media like Ethernet, 315

WiFi or UDP 316

Aside from the networking stack itself, rlite also 317

includes a POSIX-like API similar to the socket API 318

to facilitate the transition for programmers and help 319

ease the process of porting existing code. 320

Some applications have been ported to use the 321

rlite API, such as the Dropbear ssh server and Nginx 322

web server, and are available in the project’s GitHub. 323

Additionally, tools to interoperate with IP networks 324

have been created, such as a gateway between rlite 325

and IP networks, as well as a tool to tunnel IP traffic 326

through rlite. 327

A performance evaluation can be found in the 328

project’s README. On two consumer hardware Linux 329

computers connected by a 40Gbps link, it has been able 330

to reach speeds of up to 10Gbps for reliable traffic. 331

As it was described in the previous chapter, poli- 332

cies are very important for RINA and a cornerstone 333

for a lot of its functionality. Most of my contributions 334

have been focused on bringing policy functionality to 335

rlite. Additionally, I have implemented support for 336

a WiFi shim, allowing rlite to support DIFs that use 337

wireless links. 338

According to GitHub, this resulted in almost 9000 339

lines of code changed, with about 2000 being added. 340

Before my improvements, it was not possible to change 341

the behaviour of the various components, nor extend 342

the functionality with optional policies in a unified 343

way. 344

This required abstracting out the components and 345

implementing their default behaviour as a policy. As 346

rlite is implemented in C++, all policy classes need to 347



inherit from the base class and implement the neces-348

sary virtual methods. A framework exists for register-349

ing available policies, and the control tool for manag-350

ing the stack was extended to allow changing the (DIF)351

policy at runtime. Policies can also have configurable352

parameters that are specific to a particular instance of353

that policy. These can also be adjusted at runtime using354

the aforementioned tool. Safety checks are in place355

to ensure that the choice of policies and parameters356

makes sense within the environment of the DIF.357

Policies can have dependencies between them-358

selves. Therefore, a system was introduced to al-359

low declaring these in a trivial manner. An optional360

list of dependencies can be supplied when registering361

the policy. Additionally, a group registration call ex-362

ists, which automatically creates cyclical dependencies363

among all members of the group. There is a depen-364

dency resolver in place, which builds and traverses365

the dependency tree of the requested policy. It checks366

whether all declared dependencies are known, and367

whether there are no conflicts (that is, multiple policies368

belonging to the same component). In case no errors369

occur, all the policies are switched at once, in reverse370

order (the requested policy is activated last).371

Switching policies therefore behaves in a transaction-372

like manner, ensuring that the DIF does not go into373

an incoherent state if an error was encountered after374

switching e.g. half of the policies. This is especially375

useful for security, as some (block) ciphers might re-376

quire the packet fragmentation to be done at certain377

boundaries, etc., but the use is not limited to just that.378

Bundling policies as dependent and interconnected sets379

allows greater freedom for implementation, as it is now380

possible for the policy to assume some behaviour of381

another component, while having these relationships382

be strictly enforced at the system level.383

Research efforts greatly benefit from policy sup-384

port, as it allows rapid and easy experimentation with385

the network. New ideas, e.g. multipath routing algo-386

rithms, can be easily implemented and later switched387

between on the fly, allowing to observe and measure388

the behaviour under the same circumstances. There389

is no need to reboot the machines or recompile rlite390

and distribute the updates to all network nodes when391

switching policies.392

Most security features are a matter of policy, such393

as authentication when joining a DIF or traffic encryp-394

tion. [13, 14] As security is paramount for real-world395

deployments, providing an easy to use framework for396

these is crucial for encouraging third parties to con-397

sider RINA as a viable option for their infrastructure.398

Let us illustrate with a concrete example, by show-399

casing how to create a new routing policy. The basis for 400

the routing component is the Routing class, describ- 401

ing the methods that are necessary to be implemented. 402

We will therefore inherit from this class for our custom 403

routing policy. (See figure 5). 404

class MyPolicyClass : public Routing {
MyPolicyClass(UipcpRib *rib) : Routing(

rib);
˜MyPolicyClass();

public:
void dump_routing(std::stringstream &ss);

void update_local(const std::string &
neigh_name);

void update_kernel(bool force = true);
int flow_state_update(struct

rl_kmsg_flow_state *upd);
void neighbor_updated(const std::string &

neigh_name);

void neigh_disconnected(const std::string
&neigh_name);

int route_mod(const struct
rl_cmsg_ipcp_route_mod *req);

}

Figure 5. The class declaration of our custom routing
policy, listing the methods that need to be
implemented.

Once implemented, we need to register the policy, 405

using the UipcpRib::policy registermethod. 406

(See figure 6). 407

UipcpRib::policy_register(Routing::Prefix,
"my-policy-name",
[](UipcpRib *rib) {

return utils::make_unique<
MyPolicyClass>(rib);

},
{Routing::TableName});

Figure 6. Registering the custom policy.

Afterwards, we can switch the routing policy by 408

running 409

rlite-ctl dif-policy-mod \ 410

<DIF-NAME> routing my-policy-name 411

in the shell. 412

5. Conclusions 413

In this paper, we have explored some of the flaws of 414

traditional TCP/IP based networking, outlined how 415

the Recursive InterNetwork Architecture works, and 416

shown how rlite implements policies and why they are 417



beneficial for both research and production environ-418

ments.419

As it stands right now, there exist structural de-420

ficiencies that cannot be solved properly merely by421

introducing new protocols or abstractions into the pro-422

tocol stack. Although layers were the proper model,423

the meaning of layers and their purpose was misun-424

derstood. Layers are distinguished by the scope of425

their shared state, not their functionality. Research426

into alternative architectures is therefore worthwhile427

and necessary.428

Dynamic policy switching is supported by rlite and429

a number of policies are included by default. While430

none of them have any dependencies, it is possible431

to declare such relations. The framework provides432

a transaction-like behaviour to ensure that the sys-433

tem never goes into an incoherent state. All of this434

is covered by unit tests which are part of continuous435

integration.436

rlite is being continually improved. For my mas-437

ter’s thesis, I aim to leverage the policy support to ex-438

plore flow allocation approaches that take bandwidth439

requirements into consideration. Application request-440

ing a flow includes information about minimal required441

bandwidth, and the request is rejected if a path cannot442

be found in the network (DIF) graph that would satisfy443

these demands. If such a path is found, bandwidth is444

reserved along the path so that the application is guar-445

anteed to have this bandwidth available at all times,446

thus avoiding congestion.447

The OCARINA research group at University of448

Oslo has shown interest in using rlite and its policy449

support in their research efforts into routing and con-450

gestion control. Some currently present features, such451

as the configen tool, have been contributed to help452

fit rlite into their environment during my study ex-453

change there.454

Acknowledgements455

I would like to thank my supervisor Vladimı́r Veselý456

for his help with writing this paper. Additional thanks457

belong to my friend MarsCat for giving me continuous458

feedback on the style and direction of this work, as459

well as help with designing the unofficial rlite logo.460

References461

[1] John D. Day. Patterns In Network Architecture:462

A Return to Fundamentals. Prentice Hall, 2010.463

ISBN: 0-13-706338-5.464

[2] Dr. Steve E. Deering and Bob Hinden. Internet465

Protocol, Version 6 (IPv6) Specification. RFC466

1883, December 1995.467

[3] Google. IPv6 – Google. online (english). 468

https://www.google.com/intl/en/ 469

ipv6/statistics.html. 470

[4] Dino Farinacci, Vince Fuller, David Meyer, and 471

Darrel Lewis. The Locator/ID Separation Proto- 472

col (LISP). RFC 6830, January 2013. 473

[5] Vladimı́r Veselý. A New Dawn of Naming, Ad- 474

dressing and Routing on the Internet. PhD thesis, 475

Brno University of Technology, Faculty of Infor- 476

mation Technology, 2016. 477

[6] Ross Callon. The Twelve Networking Truths. 478

RFC 1925, April 1996. 479

[7] ISO/IEC 7498-1:1994. Information technology 480

– Open Systems Interconnection – Basic Refer- 481

ence Model: The Basic Model. Standard, Interna- 482

tional Organization for Standardization, Novem- 483

ber 1994. 484

[8] Andrew S. Tanenbaum and David J. Wetherhall. 485

Computer Networks. Prentice Hall, 2010. ISBN: 486

0-13-212695-8. 487

[9] Robert T. Braden. Requirements for Internet 488

Hosts - Communication Layers. RFC 1122, Oc- 489

tober 1989. 490

[10] Robert T. Braden. Requirements for Internet 491

Hosts - Application and Support. RFC 1123, 492

October 1989. 493

[11] John Day. The Interina Reference Model, 2014. 494

Pouzin Society. 495

[12] Pouzin Society. Terminology — Pouzin society. 496

online (english). http://pouzinsociety. 497

org/education/terminology. 498

[13] E. Grasa, O. Ryšavý, O. Lichtner, H. Asgari, 499

J. Day, and L. Chitkushev. From protecting pro- 500

tocols to layers: Designing, implementing and 501

experimenting with security policies in RINA. In 502

26th IEEE Internationl Conference on Communi- 503

cations (ICC), pages 1–7, May 2016. 504

[14] H. Asgari. Deliverable 4.1: Draft conceptual 505

and high-level engineering design of innovative 506

security and reliability enablers. Technical re- 507

port, Programmability In RINA for European 508

supremacy of virTualised nETworks, September 509

2014. 510

https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
http://pouzinsociety.org/education/terminology
http://pouzinsociety.org/education/terminology
http://pouzinsociety.org/education/terminology

	Introduction
	From a protocol stack to a recursive structure
	Untangling the recursive architecture
	Modern policy-based networking on your Linux
	Conclusions
	References

