
9
http://excel.fit.vutbr.cz

Design of Binary File Features for Malware
Classification
Jakub Pružinec

[1] [2] [3]

Abstract
Rapid and widespread adoption of information technologies lead to userbase diversification and
their use among laymen. Due to this, we witness malicious software evolve and grow larger day
by day endangering data of billions of users. Today’s anti-malware companies seek automated
solutions for malware detection. One of possible approaches to malware identification is to use
artificial intelligence to classify it. Precision of malware classification is heavily dependent on
available information about classified samples - features. Poor design of features may result in
wrongly classifying legitimate software as malware, or even worse, to let malware slip by undetected.
This article focuses on design, extraction, reliability and efficiency testing of static binary malware
features. Moreover, malware feature extraction tool, FileInfo, is innovated. Work is done in
cooperation with Avast company, where FileInfo is used in malware clustering system, binary file
decompiler and as a general purpose static analysis tool on a daily basis.

Keywords: Binary malware analysis — Static analysis — Classification — Features — Reverse
engineering

Supplementary Material: FileInfo source code
*j.pruzinec@gmail.com, xpruzi02@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction1

Due to modern world digitalization, property, privacy,2

and identity of people became dependent on informa-3

tion technologies. Unfortunately, crime has adopted4

digital nature as well. AV-tests institute recorded over5

137 millions of malicious software samples in 20186

[4]. Cybersecurity became crucial to information tech-7

nology vendors as they are responsible for safety of8

their clients. As a consequence of such frequent oc-9

currence of malicious software, manual analysis of10

all samples is practically impossible. Therefore, auto-11

mated malware classification is an absolute necessity12

when fighting today’s malware.13

Unsurprisingly, it is in great interest of malware14

to evade analysis and deceive classifiers to remain un- 15

detected. Evolution of malware and innovation of its 16

obscure evasion methods may result in its missclas- 17

sification. On the other hand, the fact that behavior 18

and shape of malware often differ significantly from le- 19

gitimate software is crucial for malware classification. 20

To classify malware, numerous features are extracted 21

from analyzed samples first. Designed features are 22

general enough to reflect similarity between malware 23

samples and fitting enough to distinguish between ma- 24

licious from legitimate software. What’s more, feature 25

design has significant impact on time efficiency of clas- 26

sification algorithms, as it is determined by amount of 27

features taken into consideration (dimensions). Qual- 28

http://excel.fit.vutbr.cz
https://github.com/avast-tl/retdec
mailto:j.pruzinec@gmail.com
mailto:xpruzi02@fit.vutbr.cz

ity of designed features used in a classifier can be29

estimated by ratio of correctly to incorrectly classified30

samples.31

Despite significant work done in the field of static32

analysis of malware, most freely available tools are not33

suitable for malware classification. As a master thesis,34

Katja Hahn developed a complex malware static anal-35

ysis tool, PortEx [5]. PortEx is a robust open-source li-36

brary for dissection of binary malware. Unfortunately,37

PortEx is implemented in Java, thus potentially too38

slow to be used for malware classification. Further,39

PortEx supports only Windows binary file format and40

lacks support of most features presented later in this41

article.42

FileInfo is a complex open-source feature extrac-43

tion tool developed by Avast company [6]. Contrary to44

PortEx, FileInfo is implemented in C++ and supports45

numerous file formats like PE (Windows), ELF (Linux)46

and MACHO (Apple). Additionally, FileInfo supports47

extraction of framework based features, e.g. .NET fea-48

tures. Despite its complexity, FileInfo lacks support of49

features necessary for classification of ever-evolving50

malware presented hereafter.51

This article primarily focuses on (but is not limited52

to) Windows binary file format static features. Goal of53

this work is to:54

• produce cryptographic and perceptual hashes of55

program icons56

• reconstruct TypeRef tables of .NET binaries and57

produce their cryptographic hashes58

• parse, reconstruct and produce cryptographic59

hashes of several VisualBasic metadata struc-60

tures61

• compute section and overlay entropy as an indi-62

cation of packed data63

• extract information about product version, sup-64

ported languages, trademark, copyright, original65

name and more66

• determine addresses of thread-local variable ini-67

tialization routines68

Designed features play a major role when classify-69

ing stealthy malware. Malware implementing follow-70

ing analysis evasion methods can be now classified:71

• conventional way of importing of external sym-72

bols substituted with .NET or VisualBasic sym-73

bol importing system74

• distortion of icon to corrupt their cryptographic75

hashes76

• packing of sections and overlay to evade static77

analysis78

Figure 1. Classification process

Section 2 describes classification process in general, 79

Sections 3, 4 and 5 discuss topic-based features. Addi- 80

tional features are presented in Section 6. 81

2. Malware Classification 82

Malware classification process starts with feature ex- 83

traction from analyzed samples. These features can 84

be of different nature, for example imported symbols 85

or sequence of kernel calls. Afterwards, the classifier 86

assigns classes to input samples based on previously 87

extracted features. As a final step, information about 88

the classes themselves is extracted. Classification pro- 89

cess is depicted in Figure 1. Obviously, precision of 90

classification is heavily dependent on extracted fea- 91

tures. Features need to be discriminative, meaning the 92

classifier has to be able to distinguish between classes 93

based on them. Poorly designed features may result in 94

classification of legitimate software as malware or the 95

other way around. 96

Besides proper classification, well designed fea- 97

tures may significantly increase time efficiency of clas- 98

sification algorithms. Time complexity of classifica- 99

tion algorithms is dependent on number of features 100

taken into consideration. 101

Features need to be general enough to reflect sim- 102

ilarity of malware but should not be too general as 103

it could affect their discriminability. In this context, 104

information about imported libraries is much more 105

valuable than observation that an analyzed sample con- 106

tains some code. On the other hand, features need to 107

be fitting enough to provide detailed information about 108

Figure 2. Icon modified with noise to evade
classification based on exact match of cryptographic
icon hash

classified malware. Overfitting features may suppress109

detection of similarity between analyzed samples. As110

an example, information about original file name can111

be made use of, but knowing that third letter of the112

name is ‘X’ alone, is useless. Following sections are113

dedicated to designed features.114

3. Icon Features115

From 50,000 PE malware samples, over 24,000 con-116

tained an icon. Malware authors often add icons to117

attract and deceive their victims. They often keep icons118

almost unchanged when updating or modifying mal-119

ware. Because of this, icon hashes can serve as good120

features. Cryptographic hashes work well when test-121

ing icons for exact match, however a slightest change122

in icon data results in complete change of its crypto-123

graphic hash.124

Malware authors are aware of this fact and add125

noise to their icons as can be seen in Figure 2. To126

bypass this inconvenience, icons have to parsed into127

internal representation. Parsing of icons is a lengthy128

and rigorous process that will be described in detail129

in my bachelor thesis. Simply put, in PE file format130

icons are embedded into a structure called resource131

tree. Despite the fact that PE binaries can contain mul-132

tiple icons, only one main icon is shown in a desktop133

environment.134

Main icon cannot be determined with certainty135

since the icon to be shown is dependent on desktop136

environment properties, such as DPI. Main icon detec-137

tion algorithm will be described in my bachelor thesis138

as well.139

Icon data itself has to be parsed after the main140

icon has been extracted from resource tree. Icons are141

stored in DIB file format. DIB icons of all supported142

color depths are parsed into uniform representation.143

Example in Figure 3 demonstrates how a 4 bpp DIB144

icon is parsed into two dimensional pixel array.145

When main icon is parsed, one can produce its146

perceptual hashes. Perceptual hashes are hashes rep-147

resenting images in a way that can be tested for simi-148

larity. Contrary to cryptographic hashes, slight change149

of hashed image results only in slight change of its150

perceptual hash. One such hash is called Average hash.151

Principle of Average hash computation is shown in152

Figure 3. DIB with 4bit color depth parsed into
uniform representation

Figure 4. Average hash computation

Figure 4. Image is first resized to 8× 8 dimensions 153

to filter out image details. Image is then converted 154

to greyscale and to black and white afterwards. Each 155

of 8 rows of the newly created image is a sequence 8 156

black (0) or white (1) pixels. Therefore, 8 rows of new 157

image form an 8 byte long average hash. Similarity of 158

two images can be determined by Hamming distance 159

of their Average hashes. If the distance is less than 3, 160

images are considered to be similar. 161

Both cryptographic and perceptual hashes are pre- 162

sented in Listing 1. 163

Listing 1. Icon hashes
resourceTable: { 164

"iconAvgHash" : "b7478387b4ffaeff", 165

"iconCrc32" : "c6009c34", 166

"iconMd5" :"8b6fdb44e0b3e55bf9bc8f- 167

fda1800b79", 168

"iconSha256" : 169

"4d8b8a948b29bf38cd8f186e75b58- 170

ed5017ed11aac7ebeb453752181b58f3bea", 171

... 172

} 173

4. .NET Features 174

.NET is an open-source framework developed by Mi- 175

crosoft. .NET programs are compiled in PE file format 176

as data, metadata and bytecode interpreted by virtual 177

machine. 178

FileInfo already supports reconstruction of some 179

.NET structures but omits information about imported 180

classes. This information is crucial when classify- 181

ing malware based on imported symbols, because 182

Figure 5. TypeRef table structure

.NET does not import most of its external functionality183

through conventional PE import table. Classes are184

imported through so called TypeRef table. Each entry185

of a TypeRef table may contain information about ori-186

gin of an imported class such as name, module type,187

library name and namespace. Further, .NET classes188

may be nested, meaning one class can be defined in-189

side of another class. On binary level, TypeRef entry190

of child class does not reference an external module191

but rather TypeRef entry of a parent class. Such sit-192

uation is demonstrated on an example in Figure 5.193

Reconstruction of a TypeRef table takes several steps:194

parsing, linking, and presentation. During the link-195

ing process of a parsed parent/child TypeRef records,196

entries are checked for cyclic references. Cyclic refer-197

ences are exclusively a product of manual modification198

of a TypeRef table and may result in infinite table pro-199

cessing. To prevent this, one of the references in cycle200

is simply ignored and remains detached. After recon-201

struction of a TypeRef table, its cryptographic hashes202

are produced.203

Listing 2 shows the first element in a reconstructed204

form of a TypeRef table.205

Listing 2. TypeRef table features
"typeRefTable" : [206

{ "libraryName" :207

"System.Runtime",208

"name" :209

"CompilationRelaxationsAttribute",210

"nameSpace" :211

"System.Runtime.CompilerServices"},212

]213

5. VisualBasic Features214

Despite the claim that VisualBasic programs “benefit215

from security” [7], today they are almost exclusively216

created by malware authors. Same as .NET, VisualBa-217

sic is interpreted by a virtual machine, thus implements218

Figure 6. VisualBasic

its own importing system besides PE import table. 219

VisualBasic format is closed-source, therefore it 220

is easier for VisualBasic malware to hide its inten- 221

tions. On the other hand, VisuaBasic applications 222

are rich in metadata. Alex Ionescu has done remark- 223

able work on reversing the metadata [8] and therefore 224

lots of previously hidden VisualBasic malware can be 225

now classified. Metadata includes information about 226

project names, identifiers, languages, imported func- 227

tions, objects and more. This information is spread 228

across numerous structures referencing each other as 229

shown in Figure 6. 230

To extract the necessary data, a top-down parser 231

is implemented. For the sake of receiving names of 232

imported functions, an external table is reconstructed. 233

Further, an object table is reconstructed to obtain names 234

and method names of implemented objects. External 235

table and object table are hashed and all auxiliary fea- 236

tures are presented. 237

Small excerpt of VisualBasic features is presented 238

in Listing 3. It can be assumed that malware targets 239

Facebook users and is written by an author of Swedish 240

origin. 241

Listing 3. VisualBasic features excerpt
// imported functions 242

"externs" : [243

{ "apiName" : "PlgBlt", 244

"moduleName" : "gdi32" }, 245

], 246

// implemented objects 247

"objects" : [248

{ "name" : "frmMain" 249

"methods" : [250

"C_Mutex", 251

"BROWSER_FB_DocumentComplete", 252

"BROWSER_FB_OnQuit", 253

"FACEBOOK_START"}, 254

], 255

// additional256

"projectPath" :257

"C:\\Users\\Admin\\Desktop_old\\258

Blackshades project\\Blackshades259

NET\\server\\server.vbp",260

"projectPrimaryLCID" :261

"English - United States",262

"projectSecondaryLCID" :263

"Swedish - Sweden"264

6. Other Features265

One of commonly used methods to avoid static anal-266

ysis malware authors use is to pack their program.267

Packed binary contains compressed data and code that268

are decompressed during runtime by decompression269

routines. This is particularly inconvenient, because270

extraction of static features becomes very hard or prac-271

tically impossible. On the other hand, packed binary272

can be a strong indication of malicious intentions. For273

this reason, entropy of sections and overlay is com-274

puted. High data entropy indicates compression, thus275

can serve to detect packed data. Contrary, low entropy276

indicates small data diversity and can be used to detect277

blank data sections.278

Listing 4 demonstrates detection of section com-279

pression status.280

Listing 4. Section entropy
"sections" : [281

// packed282

{ name: ".text",283

entropy: "7.8632" },284

// normal285

{ name: ".rodata",286

entropy: "4.3242" },287

// empty288

{ name: ".fini_array",289

entropy: "0.8632" },290

]291

Thread-local data initialization routines are abused292

by malware authors to evade static analysis. Thread293

data is stored in dedicated directory in PE file format.294

This data needs to be initialized before entry point exe-295

cution. In other words, thread-local data initializers are296

called before the main() function. Malware often im-297

plements its malicious behavior in one of thread-local298

data initializers for this reason. Intuitive investiga-299

tion of main() function is useless in this case. What’s300

more, many debuggers set breakpoints on entry point,301

therefore thread-local data initialization routines may302

infect host machine before the analyst has a chance to303

intervene.304

Addresses are presented as shown in Listing 5.305

Listing 5. Thread-local data intializers

// thread-local initialization routines 306

"threadLocalInitializers" : [307

"0x401060", 308

"0x4010a0" 309

], 310

Besides the data necessary for proper program ex- 311

ecution, compilers often add additional information 312

about the product. Such information can be retrieved 313

from VersionInfo resource tree entry in PE file for- 314

mat. This entry holds information about supported 315

languages, legal copyright, original file name, version, 316

timestamps and more. 317

Part of information extracted from VersionInfo of 318

a malware is to be found in Listing 6. This information 319

suggest that the author was of German origin. The au- 320

thor probably instrumented a Firefox executable built 321

on 2010/09/14. 322

Listing 6. VersionInfo features
"versionInfo" : { 323

"languages" : [324

{ "codePage" : "utf-16", 325

"lcid" : "German - Germany" } 326

], 327

"strings" : [328

{ "name" : "CompanyName", 329

"value" : "obama" }, 330

{ "name" : "OriginalFilename", 331

"value" : "my_st0re_lo- 332

ader_____.exe" }, 333

{ "name" : "ProductName", 334

"value" : "Firefox" }, 335

{ "name" : "BuildID", 336

"value" : "20100914121323" 337

} 338

] 339

} 340

7. Conclusions 341

Design of features and their impact on malware clas- 342

sification have been discussed in this article. Further, 343

some static analysis evasion approaches and methods 344

to deal with them were presented. Following contribu- 345

tions were made: 346

• design and extraction of .NET TypeRef table 347

features 348

• design and extraction of icon features 349

• design and extraction of VisualBasic metadata 350

features 351

• design and extraction of VersionInfo features 352

• design and extraction of entropy and thread- 353

local directory features 354

So far, only icon and .NET features were integrated 355

into Avast malware clustering system. In Table 1 and 356

Table 2 are statistics of clusters classified as malware357

based solely on a given feature. Beside the size of a358

cluster, detected malware ratio can be seen. Further,359

malware detection ratio of 1000 randomly selected360

samples from clusters analyzed by ESET and Kasper-361

sky antivirus software is present.

N samples Detected ESET Kaspersky
406 97% 95% 100%
221 96% 100% 100%
50 96% 100% 100%

Table 1. Icon MD5 based clusters
362

N samples Detected ESET Kaspersky
1.3M 96% 100% 100%
63K 98% - 82%
13K 98% 99% 100%

Table 2. TypeRef MD5 based clusters

In close future, newly designed features imple-363

mented in FileInfo will be integrated into the cluster-364

ing system and RetDec decompiler developed by Avast365

company [6]. FileInfo implements an in depth analysis366

of the PE file format prevalently and soon it will be367

forced to respond to increasing occurrence of Linux368

and macOS malware with extraction of new features369

regarding ELF and MACHO file formats.370

Further, FileInfo has great potential for improve-371

ment of data recognition features, such as overlay for-372

mat detection. Besides that, features regarding file for-373

mat violations should be implemented, as they serve374

as good indication of malicious behavior. Some of375

the problems mentioned here will be addressed in my376

bachelor thesis soon.377

Acknowledgments378

I would like to thank my supervisors Doc. Dr. Ing.379

Dušan Kolář, Ing. Marek Milkovič and Ing. Jakub380

Křoustek, PhD for help and support throughout the381

whole project.382

References 383

[1] MBIS. Cyber forensic - scientific inves- 384

tigations. https://www.mbis-inc.net/ 385

cyber-forensic-services.html. [On- 386

line; accessed April 6, 2019]. 387

[2] Michael Sikorski and Andrew Honig. Practical 388

malware analysis: the hands-on guide to dissect- 389

ing malicious software. no starch press, 2012. 390

[3] Warren Perez Araya. Is malware analy- 391

sis right for your business? https: 392

//securityintelligence.com/is- 393

malware-analysis-right-for-your- 394

business/, 2018. [Online; accessed April 6, 395

2019]. 396

[4] Av-test institute: Malware statistics 2018. 397

https://www.av-test.org/en/ 398

statistics/malware/. [Online; accessed 399

April 6, 2019]. 400

[5] Katja Hahn. Robust static analysis of portable 401

executable malware. Mater Thesis, HTWK Leipzig, 402

2014. 403

[6] J. Křoustek, P. Matula, and M. Milkovič. An 404

open-source machine-code decompiler. https: 405

//retdec.com/static/publications/ 406

retdec-slides-recon-2018.pdf, 2018. 407

[Online; accessed April 6, 2019]. 408

[7] Microsoft corporation: Visual basic guide. 409

https://docs.microsoft.com/en-us/ 410

dotnet/visual-basic/, 2018. [Online; 411

accessed April 6, 2019]. 412

[8] Alex Ionescu. Visual Basic: Image Internal Struc- 413

ture Format. Relsoft Technologies, 2004. 414

https://www.mbis-inc.net/cyber-forensic-services.html
https://www.mbis-inc.net/cyber-forensic-services.html
https://www.mbis-inc.net/cyber-forensic-services.html
https://securityintelligence.com/is-malware-analysis-right-for-your-business/
https://securityintelligence.com/is-malware-analysis-right-for-your-business/
https://securityintelligence.com/is-malware-analysis-right-for-your-business/
https://securityintelligence.com/is-malware-analysis-right-for-your-business/
https://securityintelligence.com/is-malware-analysis-right-for-your-business/
https://securityintelligence.com/is-malware-analysis-right-for-your-business/
https://securityintelligence.com/is-malware-analysis-right-for-your-business/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://retdec.com/static/publications/retdec-slides-recon-2018.pdf
https://retdec.com/static/publications/retdec-slides-recon-2018.pdf
https://retdec.com/static/publications/retdec-slides-recon-2018.pdf
https://retdec.com/static/publications/retdec-slides-recon-2018.pdf
https://retdec.com/static/publications/retdec-slides-recon-2018.pdf
https://docs.microsoft.com/en-us/dotnet/visual-basic/
https://docs.microsoft.com/en-us/dotnet/visual-basic/
https://docs.microsoft.com/en-us/dotnet/visual-basic/

	Introduction
	Malware Classification
	Icon Features
	.NET Features
	VisualBasic Features
	Other Features
	Conclusions
	References

