
9
http://excel.fit.vutbr.cz

Multi-user interaction with 3D objects in
Augmented Reality
Martin Minárik*, Adam Jurczyk**

Abstract
The aim of this paper is to showcase a possible solution that allows multiple people to interact with
a single customizable object in a shared augmented reality session.
The work makes use of the new features available in ARKit 2 to share the AR session. It also
demonstrates 3D object handling and customization with changes synchronized in real-time to all
connected users, as well as resolving conflicts resulting from multiple people interacting with the
same single object.
Our goal is to demonstrate the possible use and benefits in presenting work from a designer to a
client in real environment with immediate interactive input from the client.

Keywords: Augmented Reality — 3D object multi-user interaction — ARKit 2

Supplementary Material: N/A
*xminar31@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology
**xjurcz00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

With the fast-paced evolution of technology, many peo-
ple living in a modern society have access to a device
that enables the user to experience augmented real-
ity. There exist many applications that span multiple
fields, from simple games that allow you to interact
with mythical dragons, to visual aides that can provide
easy access to information for doctors during surgery.
Many augmented reality tools can help students with
learning about the body by displaying a 3D model
that they can view from any angle they would want.
However, most of these applications have so far been
limited to a single user at a time, which limits their
potential usability due to the simple fact that only one
person can interact with it on a single device.

Luckily, there has been a lot of progress in the area
of AR experience sharing in the recent year or two.

Google has introduced Cloud Anchor [1] sharing to
their ARCore platform. This service allows users to
host an anchor created in their local space via Google
Cloud services. However, we found this approach
unsuited to our goal, since it requires a live internet
connection to Google servers. This could create issues
when trying to present in an area with limited or no
network connection.

Microsoft HoloLens has also very recently intro-
duced Azure Spatial Anchors [2] as a way to share
augmented reality experience. In similar fashion to the
ARCore platform, the anchors have to be uploaded to
Azure resources and are shared via a web application
hosted on Azure. As such they also require a network
connection. In comparison to Google though the an-
chors hosted on Azure do not expire after 24 hours.
The service can also be integrated with applications

http://excel.fit.vutbr.cz
mailto:xminar31@stud.fit.vutbr.cz
mailto:xjurcz00@stud.fit.vutbr.cz

using ARKit or ARCore.
Apple environment on the other hand provides

tools to share these anchors without the need for an
internet connection(3.1). This allows us to create a
smooth experience independent of outside network
conditions, since the users’ devices handle everything
locally.

Our solution is an application that enables multi-
ple users to view the same virtual object, in this case
a knight. Each user can interact with the knight and
change it’s properties such as helmet or weapon or
modify the texture of the armor. The changes are
shown on every single person’s device at real time
from their own point of view. This makes it easier to
visualize potential ideas to all users during product pre-
sentation and also improve the gathering of feedback
by allowing the users themselves to make adaptations
to the presented model.

The chief challenges that we faced were the act of
synchronizing the shared session user-space as well
as resolving conflicting user actions when interacting
with the same element at the same time. All actions
need to be visible with minimal delay everywhere, so
any networking messages sent between clients must
be simple and without significant overhead. The prob-
lems and solutions will be described in the following
sections.

2. Display and interaction with a 3D
model

To display virtual models in 3D we use SceneKit as
rendering engine. This comes with limitations since
SceneKit supports only few file formats that can repre-
sent a 3D object. Supported formats are COLLADA
(.dae), Alembic (.abc) and SceneKit’s scene file for-
mat (.scn). Xcode automatically converts the file to
SceneKit’s compressed scene format. The compressed
file retains its original .dae or .abc extension [3].

The problem is that most models are created in
different format and finding model in the right format
is difficult. Solution to this is to use 3D modelling
tool such as Blender to convert models to the right for-
mat. COLLADA is the preferred framework because
it is more popular and can display objects formed by
a collection of primitives, including triangles, poly-
gons, and spline curves or even a full scene, including
lighting, animation, and camera information which is
closest to SceneKit’s scene file format. It’s also im-
portant to set the model to it’s origin, correctly scale
it and optionally delete unsupported nodes as it’s not
possible to do it later in Xcode.

2.1 Using SceneKit
Displaying 3D content in SceneKit [4] is done by cre-
ating a scene that contains a hierarchy of the nodes [5]
and properties that represent visual elements. The
main node is rootNode which defines the coordinate
system of the world. Each child attached to rootNode
creates its own coordinate system which is relative to
node’s parent node. A node can be transformed by edit-
ing its position, rotation and scale properties or using
transform property. The node hierarchy determines
spatial and logical structure of the scene. However,
determining whether node is 3D object, light or cam-
era is done by attaching objects to nodes. There are
three main types of nodes in SceneKit: groundNode,
lightNode, cameraNode. All the nodes in our project
are using ARKit [6] to get data about the real-world
space. Firstly, groundNode displays 2D and 3D objects
in scene, in our case displaying a knight in the real-
world space. Secondly, lightNode controls shadows
and shading of the scene. ARKit can estimate scene
lighting based on a captured video frame and change
SceneKit’s lightning accordingly providing more real-
istic model. Finally, cameraNode contains information
of the viewpoint from which the scene appears. This
information is used to rotate the knight to the user who
is interacting with it.

rootNode

cameraNode groundNode cameraNode

Figure 1. Datagram showing node hierarchy in
SceneKit.

3. Network sharing

The main goal of the network layer is to accurately
share information about object position and the changes
that occur to it’s parts. While there may not be an issue
when dealing with a single user changing the object,
when multiple people try to do so at once it can create
discrepancies and make the whole shared experience
unusable, which is not desirable.

In order to deal with these issues, we have de-
cided to use a server-client based approach. One of the
devices, usually the one where the session is started,
serves as a central hub for all the other peers. Every
peer communicates with the host, and the host then
distributes the message to the rest of the peers. Be-
cause all the communication travels through a central
server, it acts as a centralized synchronization unit in

moveObject() ?Text

Text

Actor

Actor Actor

HOST

allowMovement()

newPosition() newPosition()

objectMovement
Locked()

DEVICE
A

DEVICE
B

Figure 2. User conflict resolution example. User on device A tries to drag the object, which sends a request to
the host device. As no one is moving the object, the movement is allowed. Object movement is then locked for
all the other users, with the object glowing the color of the action initiator. Device A then transmits new position
of the object, which is redistributed to all the other devices.

case there are some discrepancies during object move-
ment. Thanks to that we no longer have to worry about
potential differences in individual users‘ sessions.

When users attempt to modify the same part of the
object, e.g. both try to switch the knight‘s weapon,
the server also resolves the conflict and chooses only
one of the possible results. The conflict resolution is
based on first come first serve basis, meaning the first
device to send it‘s request is chosen. In the case that
the operation takes more time (user is dragging the
object), the server signals the other peers that an action
is in progress, and no one except the action initiator
can interact with the object in the given time. This is
also shown on the user’s device with a glow around
the object the color of the given user, or by the greying
out of the choice menus.

By indicating the action availability in this manner
to all the users, we ensure that everyone always knows
what is going on, and thus we prevent user confusion
and frustration.

3.1 MultipeerConnectivity
MultipeerConnectivity [7] is a native Apple framework
that handles communication between devices using
underlying networks. It can use infrastructure Wi-
Fi, Bluetooth or direct Wi-Fi. The framework also
manages the advertisement of a joinable AR sessions
as well as its discovery by peers wanting to join. The
entire session is managed by an internal object that
also stores individual peer ids uniquely identifying the
device. Messages are sent using this framework in a
binary format, the encoding and decoding of messages
implemented using Apple‘s Codable protocol.

4. Conclusions
The goal of this paper was to explore and demonstrate
the possibility of an augmented reality session with
multiple users that can interact with 3D objects placed
into the real world. We presented issues we faced and
the technologies available in the Apple iOS ecosystem

that help us solve them.
We demonstrated a possible implementation of real

time interaction with a simple customizable model,
as well as outlined a possible solution to handling
user action conflicts. While the model we used is
simple in it‘s nature, it is enough to showcase our work.
However, it can be swapped for a more appropriate
one to suit a different situation.

In the future we would like to explore options to
move the hosting of the objects from a local device to
a cloud, as it would allow for a more permanent expe-
rience without the need to have an initiating presenter.

Acknowledgements

We would like to thank our supervisor Ing. Vı́tězslav
Beran, PhD. for his help and patience during the cre-
ation of our project.

References
[1] Google. Share ar experiences with

cloud anchors. [online], February 2019.
https://developers.google.com/
ar/develop/java/cloud-anchors/
overview-android.

[2] Craig Treasure. Share ar experiences with cloud
anchors. [online], February 2019. https:
//docs.microsoft.com/en-us/azure/
spatial-anchors/overview.

[3] Apple Inc. Scnscenesource. [on-
line]. https://developer.apple.
com/documentation/scenekit/
scnscenesource/.

[4] Apple Inc. Scenekit. [online].
https://developer.apple.com/
documentation/scenekit/.

[5] Apple Inc. Scnnode. [online].
https://developer.apple.com/
documentation/scenekit/scnnode.

https://developers.google.com/ar/develop/java/cloud-anchors/overview-android
https://developers.google.com/ar/develop/java/cloud-anchors/overview-android
https://developers.google.com/ar/develop/java/cloud-anchors/overview-android
https://docs.microsoft.com/en-us/azure/spatial-anchors/overview
https://docs.microsoft.com/en-us/azure/spatial-anchors/overview
https://docs.microsoft.com/en-us/azure/spatial-anchors/overview
https://developer.apple.com/documentation/scenekit/scnscenesource/
https://developer.apple.com/documentation/scenekit/scnscenesource/
https://developer.apple.com/documentation/scenekit/scnscenesource/
https://developer.apple.com/documentation/scenekit/
https://developer.apple.com/documentation/scenekit/
https://developer.apple.com/documentation/scenekit/scnnode
https://developer.apple.com/documentation/scenekit/scnnode

[6] Apple Inc. Arkit. [online].
https://developer.apple.com/
documentation/arkit/.

[7] Apple Inc. Multipeerconnectivity.
[online]. https://developer.
apple.com/documentation/
multipeerconnectivity.

https://developer.apple.com/documentation/arkit/
https://developer.apple.com/documentation/arkit/
https://developer.apple.com/documentation/multipeerconnectivity
https://developer.apple.com/documentation/multipeerconnectivity
https://developer.apple.com/documentation/multipeerconnectivity

	Introduction
	Display and interaction with a 3D model
	Network sharing
	Conclusions
	References

