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Abstract
Humans are hosts to an enormous variety of microbes, bacterial, archaeal, fungal, and viral.
Unfortunately, science knows only little about them. Since most of the bacteria has not been studied
yet, the main question for a given sample is not only which species of bacteria a specific sample
contains, but also what can the bacteria in this sample do (i.e. lipid digestion or resistance to
antibiotics). This task is called functional profile prediction and it will be the main focus of this paper.
In this paper, I introduce methods for functional analysis, describe existing tools and then design a
new tool inspired by them, which implements different methods for the prediction. The results of the
experiments imply, that the implemented tool is accurate and useful when using the same method
for experimental evaluation as existing tools. However, I propose a new approach to evaluation,
that concerns only the most specific bacterial functions, where the results differ from the classic
one. In the end, I discuss possible implications of this difference.
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1. Introduction1

Humans are hosts to an enormous variety of microbes.2

Some of these are invaders that can cause serious dis-3

eases, but there is a lot of microbes that are essential4

to human life. Particularly gut microbiome is crucial5

for the regular function of the digestion tract. In the6

last years, it was proven that irregularities in gut micro-7

biome are linked to many conditions ranging from di-8

gestion tract diseases like inflammatory bowel disease9

to antibiotic resistant infections [1]. Unfortunately,10

because of a big variety of present bacterial species11

and the impossibility to cultivate most of them in lab-12

oratories, the gut microbiome is not well described.13

Modern approaches in microbiology, specifically high-14

throughput sequencing and metagenomics, seem to 15

be able to solve these problems and allow us to study 16

microbiome thoroughly and understand how it is con- 17

nected to human health [1, 2]. 18

Since most of the bacteria present in gut micro- 19

biome has not been studied yet, the main question is 20

not which species of bacteria a specific sample con- 21

tains, as we lack named species for most of the bacteria 22

present in the sample, but instead what can the bacte- 23

ria do (i.e. lipid digestion or resistance to antibiotics). 24

This task is called functional profile prediction and it 25

will be the main focus of this paper. Functional profile 26

prediction is based on the observation, that bacteria 27

species with similar RNA sequence tend to have sim- 28
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Figure 1. Diagram showing steps of bacterial
composition analysis

ilar functions, whereas between species with small29

RNA similarity the functional profile differs [1].30

In this paper, we will introduce existing bioinfor-31

matics tools for functional profile prediction, namely32

PiCRUST, and Tax4Fun. We will discuss the different33

methods they use for prediction. Then we will design34

a new tool inspired by them, that will implement the35

classic methods for functional profile prediction, but36

should also include a new approach to this problem37

based on linear regression.38

In Chapter 2, I will define theoretical background39

needed to understand this paper. In Chapter 3, I will40

discuss the created tool. Chapter 4 contains experi-41

mental evaluation of the tool. In the last Chapter, I will42

talk about the future work and possible extension of43

the created tool.44

2. Theoretical background45

In this section, we will define the field this paper relates46

to - metagenomics. Then, we will discuss the details of47

the functional composition analysis of a given sample.48

This section is based mostly on papers from Xochitl49

C. Morgan [1], Jay-Hyun Jo [3] and Andreas Hiergeist50

[2], where more detailed information can be found.51

2.1 Metagenomics52

Metagenomics is a study of genetic material recovered53

directly from samples. It does not require isolating54

the DNA of individual species, neither cultivating in55

laboratories.56

There are two main types of analysis often per-57

formed in metagenomics. The first one is taxonomic,58

where the main question is: Which bacteria are present59

in the given sample? The second one, the main focus60

of this thesis, is functional: What can the bacteria in61

this sample do?62

The steps of taxonomic analysis can be seen in63

Figure 1.64

2.2 16S rRNA65

To minimize the length of the DNA sequence that66

must be processed to determine the species and func-67

tional profile, only a part of genetic information, called68

marker gene, is used. Marker gene needs to have the69

following attributes:70

• It is present in every organism we want to study 71

• It is unique for every species 72

• It is similar for closely related species and dif- 73

ferent for non-related species 74

For bacteria, a commonly used marker gene is 16S 75

RNA. It contains conserved regions, that are consistent 76

among all species, and variable regions, that are differ- 77

ent. In the taxonomic analysis, we study and compare 78

the variable regions to determine which species we are 79

dealing with. 80

2.3 Functional profile analysis 81

In functional analysis, we want to find the different 82

metabolic functions of organisms in the sample, as 83

well as to estimate their abundance — how many or- 84

ganisms in the sample have this function. The process 85

of functional analysis is shown in Figure 2. Functional 86

profiles have the form of KO identifiers with abun- 87

dance in the corresponding sequences. KO identifiers 88

refer to molecular functions and can be found in the 89

Kegg Orthology database [4]. The functional profiles 90

represent which bacterial functions in what quantity 91

are present in the given sample. 92

The input of functional analysis can be either raw 93

sequences or already preprocessed and clustered data 94

(OTU table — a matrix that gives the number of reads 95

per sample per OTU). For the purpose of explaining all 96

steps of the analysis, we will suppose we start with raw 97

DNA (or RNA in microbiome research) sequences. 98

In the data preprocessing, DNA sequences that 99

are very similar (95-98% similarity) are clustered into 100

groups called OTUs. OTU stands for the operational 101

taxonomic unit and is used as a synonym to species 102

since we lack a real, named species corresponding 103

to most of the clusters. Each OTU has an identifier, 104

but these are generic and are not consistent among 105

different samples, so to represent OTUs we use the 106

nucleotide sequences. 107

The basic principle of functional analysis is to 108

compare representative sequences of OTUs to a refer- 109

ence database that contains the functional profile of 110

previously studied organisms and find the best match. 111

For the genetic material that cannot be paired with 112

a known organism, we can search for the most simi- 113

lar organisms and deduce the functional profile from 114

there. 115

A big question is, how to find the most similar 116

organisms to a given sentence. Various methods for 117

solving this problem exist. The naive algorithm is 118

based on analyzing the sequences and finding the most 119

similar one - these methods will be further called dis- 120

tance based. More advanced algorithms are based on 121



Figure 2. Diagram showing steps of functional
analysis of a sample

Figure 3. Example of a phylogenetic tree

constructing a phylogenetic tree, that represents evolu-122

tionary relationships between the species, of all OTUs123

and deduces the estimated functional profile from the124

tree structure.125

2.3.1 Functional analysis methods126

In this section, I will describe two distinctive groups127

of methods for functional analysis.128

Phylogenetic tree based algorithms129

This group of methods is commonly used in bioin-130

formatic tools for functional analysis. It is based on131

constructing a phylogenetic tree which is a graph that132

represents evolutionary relations between organisms.133

Each node of such a tree represents a species. Some of134

them, specifically the leaves, are living species, while135

the others may be extinct or only theoretical. The136

common parent of two nodes is their most probable137

evolutionary ancestor.138

An example of a phylogenetic tree can be seen in139

Figure 3. This is a tree where the lengths of individual140

lines between nodes represent the estimated time of141

evolution. If the line is short, the nodes it connects142

are very similar, since the time for evolution is short143

which implies fewer changes in the genome compared144

to the long lines.145

From the phylogenetic tree, we can estimate the146

evolutionary relationship between different species.147

Then it is possible to infer a correct combination of148

known functional profiles for all species for which149

the functional profile was not found in the reference150

database.151

The inference of unknown functional profiles can152

be done by finding the nearest nodes with known pro-153

files. We can search for a certain number of known154

profiles, or limit the search by sequence similarity to155

the investigated. After we have a set of nodes with156

known profiles, we compute a consensus profile based157

on the distance to the investigated node — it can be158

a simple average, or closer nodes may have a bigger159

weight than the more distant ones. 160

Distance based algorithms 161

The basic idea used in these algorithms is my orig- 162

inal work that I introduced in my masters thesis. It 163

is based on analyzing the representative sequences 164

of given OTUs and comparing them to reference se- 165

quences with known functional profiles. The resulting 166

functional profile is then inferred from the most similar 167

reference OTUs. 168

To speed up the search, the similarity between 169

sequences is usually precomputed and stored in a dis- 170

tance matrix. The rows and columns of the distance 171

matrix represent the OTUs and the numbers in the 172

matrix represent the distance of OTUs in the corre- 173

sponding row and column. 174

To compute the similarity between sequences, dif- 175

ferent methods can be used. One of them is to simply 176

count the number of equal characters in their sequence 177

alignments. Others punish the differences according to 178

their evolutionary probability — because of the differ- 179

ent chemical nature of the nucleotides in RNA, certain 180

changes in the sequences are more probable than the 181

others. There are various matrices that express the 182

probability of interchange between the nucleotides [5]. 183

2.4 Existing tools 184

The most used tools for functional analysis are Picrust 185

[6] and Tax4Fun [7]. They both implement the phylo- 186

genetic tree approach. The main difference between 187

them is their reference database. Picrust uses Green- 188

genes [8], which is outdated, while Tax4Fun uses Silva 189

[9], which is a newer database that is still frequently 190

updated. To eliminate this disadvantage, the creators 191

of Picrust developed Picrust 2, which is not dependent 192

on reference database [10]. Unfortunately, Picrust 2 is 193

still in beta version. 194

Picrust is a bioinformatic software package imple- 195

mented in Python and R, while Tax4Fun is an open- 196

source package for R. Tax4Fun is newer and tries to 197

alter the prediction method of Picrust to make it more 198

accurate. It is also easier to use and faster. 199

The work-flow of Picrust can be divided into two 200

parts, Gene content inference, and Metagenome in- 201

ference. In Gene content inference, Picrust takes the 202

reference OTU table from Greengenes database and 203

gene content table from IMG, which is a table contain- 204

ing functional profiles for known genomes. It creates a 205

tree featuring all OTUs from the reference database us- 206

ing ancestral state reconstruction algorithm. For OTUs 207

with an unknown functional profile, an estimated pro- 208

file is computed, using the position of the given OTU 209

in the phylogenetic tree and the closest OTUs with a 210



known functional profile. This step is independent on211

the sample, so it is computed only once. [11]212

In Metagenome inference, Picrust takes an user-213

provided table of OTUs, and using the gene content214

table from the previous step, predicts metagenomic215

content of the given sample. The prediction is done216

by summing up the functional profiles (obtained in217

the previous step) corresponding to OTUs in the input218

table while taking into account their abundance. [11]219

3. Created tool220

In my masters thesis, I have created a new tool for221

functional profile prediction. It is not dependent on a222

reference database, as Picrust is. It implements various223

methods for dealing with OTUs with the unknown224

functional profile.225

The dataflow of the designed tool can be seen in226

Figure 4. The yellow modules (Input parser, Known227

profile resolver, Output generator) will be the same for228

every sample and method for dealing with unknown229

OTUs, the pink one (Unknown profile resolver) differs230

and its accuracy is the target of the experiments.231

The Input parser loads the data from the input232

sample. Then the Known profile resolver determines,233

which OTUs have known functional profiles, and which234

do not. The unknown ones are then processed by235

the Unknown profile resolver, which tries to estimate236

the most probable KO profile composition. Both the237

known and the estimated profiles are then merged to-238

gether in the Output generator.239

The Unknown profile resolver currently imple-240

ments three methods for functional profile prediction,241

two are distance based and one uses a phylogenetic242

tree. They will be described in detail in the following243

sections. The results of the experiments will also be244

given.245

The green modules (KO profiles, OTU similarity)246

represent data sources. They are precomputed and247

saved in files, but the tool contains code for the pre-248

computation so it is possible to repeat it for other ref-249

erence databases. KO profiles data source is a table of250

known species with corresponding KO profiles. OTU251

similarity is a data source of similarity between OTUs252

with known and with unknown functional profiles. It253

can either be a similarity matrix or a phylogenetic tree,254

or anything else, that somehow represents similarity255

between OTUs.256

4. Experiments257

To simulate the real-life situation, where we do not258

have information about many functional profiles, I259

have created a version of the reference table with a260

Figure 4. Design of the created tool for functional
profile prediction based on 16S rRNA data

fraction of rows missing. For 0% missing, the predic- 261

tion should be 100% accurate, since we have all the 262

data and no estimation is needed. 263

For each method, the accuracy was tested on 10 264

artificial samples. To simulate missing functional pro- 265

files, a part of reference KO profile table was randomly 266

deleted. The ratio of the deleted table was incremen- 267

tally increased, from 0% to 90%, to see how much the 268

accuracy drops with more profiles missing. Since the 269

deletion from the reference table was randomized, this 270

step was performed 10 times. To summarize, for each 271

ratio of missing functional profiles, I performed 100 272

tests. 273

In the visualization of the results of the experi- 274

ments I always show the correlation between the ex- 275

pected and the computed functional profile in a box- 276

plot. The y-axis will be the correlation and the x-axis 277

the ratio of the known functional profiles. This way 278

we can see how much the accuracy drops when we do 279

not have enough reference data. 280

The correlation coefficients are computed as Pear- 281

son Product-Moment Correlation, which shows the 282

linear association between two vectors. The values 283

of the coefficients can range from -1 to 1, where 0 284

means no association between the vectors, values big- 285

ger than 0 show positive association and values smaller 286

than 0 show negative association. The proximity to 287

-1 and 1 show the strength of the association. Gen- 288



erally, values bigger than 0.5 are considered a strong289

association [12].290

4.1 Distance based methods291

I have experimented with two methods for functional292

prediction based on distance. I have used the Green-293

genes database, for which a global alignment of all294

sequences is available. Greengenes database was cho-295

sen so I can compare my results with Picrust in the296

future. However, the tool is not dependent on the297

database, and if another multiple sequence alignment298

data are used, the prediction will work.299

Both methods look for the most similar OTUs with300

a known functional profile. The similarity is measured301

by the distance of the multiple sequence alignment.302

The number of similar sequences that are taken into303

account is an attribute I tried to experiment with. The304

best results were achieved when the estimated profile305

was computed as the average of profiles of 4 most306

similar sequences.307

The difference in the implemented methods is the308

computation of the distance metric. The first one309

simply counts the number of similar symbols in the310

multiple sequence alignment. The second one uses a311

transition/transversion scoring matrix for nucleotides.312

It takes into account the chemical attributes of RNA313

bases and the probability of exchange of the nucleotide314

pairs.315

Surprisingly, better results were achieved with the316

simpler method, that does not respect the chemical317

properties of nucleotides. This might be caused by a318

wrong approach to gaps in the scoring matrix, or by319

the fact that the distance matrix was computed from320

the global alignment of all Greengenes database se-321

quences, so the impact of alignment errors might be322

significant. Therefore, with respect to the limited scope323

of this paper, this is the only method which will be324

discussed further. We can see the results of the average-325

finding method in Figure 5.326

4.2 Phylogenetic tree based methods327

I have also implemented a method based on a phyloge-328

netic tree. It uses a UPGMA (short for ”unweighted329

pair group method with arithmetic mean”, an algorithm330

for creating a phylogenetic tree based on sequence sim-331

ilarity) method to compute a phylogenetic tree of all332

the OTUs from the Greengenes database, both the ones333

with known and unknown KO profiles. Then the un-334

known OTUs are determined as the average profile of335

OTUs which are connected to it in the tree.336

The tree is computed before the functional predic-337

tion. The script for the tree creation is a part of the338

Figure 5. Evaluation of a distance based method for
functional prediction on complete functional profiles.
The x-axis represents the ratio of known profiles in the
sample, the y-axis represents the correlation between
expected and computed result.

Figure 6. Evaluation of a phylogenetic tree based
method for functional prediction on complete
functional profiles. The x-axis represents the ratio of
known profiles in the sample, the y-axis represents the
correlation between expected and computed result.

tool, so the process can be repeated for any reference 339

data. 340

In UPGMA, each item is paired with the closest 341

item by a given distance matrix. The pair is connected 342

and is assigned a parent node in the resulting tree. In 343

the name of the node, I store names of all its children. 344

That means that the root has names of all the OTUs in 345

the reference database. The closest OTUs to any OTU 346

are the ones with which it was connected. 347

When looking for the most similar OTU, I search 348

the tree and find, in which point the searched OTU 349

was connected with some other node. The name of the 350

node with which it was connected are the ones that are 351

the most similar, and the estimated profile is inferred 352

from them. The results can be seen in Figure 6. 353

4.3 Comparison 354

As we can see, the method based on average is slightly 355

better than the one based phylogenetic tree. However, 356



Figure 7. Evaluation of a distance based method for
functional prediction on the rarest functions. The
x-axis represents the ratio of known profiles in the
sample, the y-axis represents the correlation between
expected and computed result.

the correlation between expected and computed pro-357

files is surprisingly high, over 99% even when only358

10% of the profiles are known. Picrust and Tax4Fun359

also report a high prediction accuracy [11, 13].360

The high correlation can be caused by a number361

of reasons, the most probable is common metabolic362

functions — each bacteria must have basic functions363

for translation, transcription, and processing of com-364

mon metabolites. This is the part of the functional365

profile, that is the same for every species of bacteria,366

independent on the sample. A number of KO specific367

for a certain species of bacteria is much smaller, so it368

might not have that much of an effect for the correla-369

tion.370

Since every bacteria has common metabolic func-371

tions, it is expected that they will be present in every372

sample. More interesting are the functions that are373

exclusive for a certain species. From this reason, I374

have altered the correlation so that it takes into account375

only those KOs, that are present in less than 1% of the376

species in the reference table.377

With this approach, the results between the meth-378

ods are more different, so it is more useful for compar-379

ing different algorithms. We can see the new results in380

Figures 7 and 8. Now, we can see that the correlations381

drop more significantly, and with only 10% of the pro-382

files known, we are at the 60% match. The difference383

between the methods is still minimal, which might384

indicate, that while 16S rRNA is immensely useful as385

a species identifier, the connection between the 16S386

sequence and functional profile is not very significant387

and to predict functional profile more accurately, we388

need to look at the whole genome. To confirm this389

hypothesis, more analysis and evaluation have to be390

performed.391

Figure 8. Evaluation of a phylogenetic tree based
method for functional prediction on the rarest
functions. The x-axis represents the ratio of known
profiles in the sample, the y-axis represents the
correlation between expected and computed result.

5. Conclusion 392

In this paper, I have introduced functional profile anal- 393

ysis, which is an important part of metagenomic re- 394

search. I have discussed the most used methods and 395

created a tool that implements them. 396

The focus of this paper is the comparison of dif- 397

ferent methods for functional analysis. I have shown, 398

that the classic approach to experimental evaluation — 399

when we look at the whole functional profile — gives 400

a different result than the evaluation that looks only at 401

the more specific functions. 402

The significance of the evaluation of the specific 403

functions is that it gives us more detailed information 404

about a sample. The common metabolic functions are 405

a part of every bacteria species, so it is not a surprise 406

to find them in every sample. More rare functions are 407

more informative and harder to predict. 408

In the future, I would like to compare my tool with 409

Picrust and Tax4Fun. It would be interesting to see 410

how they stand in the tests of only specific KOs since 411

they are widely used in bioinformatics research. I will 412

also add some more methods for functional analysis, 413

including one based on linear regression, to try a more 414

computer-sciences inspired approach. 415
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