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Abstract

Humans are hosts to an enormous variety of microbes, bacterial, archaeal, fungal, and viral.

Unfortunately, science knows only little about them. Since most of the bacteria has not been studied
yet, the main question for a given sample is not only which species of bacteria a specific sample
contains, but also what can the bacteria in this sample do (i.e. lipid digestion or resistance to

antibiotics). This task is called functional profile prediction and it will be the main focus of this paper.

In this paper, | introduce methods for functional analysis, describe existing tools and then design a
new tool inspired by them, which implements different methods for the prediction. The results of the
experiments imply, that the implemented tool is accurate and useful when using the same method
for experimental evaluation as existing tools. However, | propose a new approach to evaluation,
that concerns only the most specific bacterial functions, where the results differ from the classic
one. In the end, | discuss possible implications of this difference.

Keywords: bioinformatics — metagenomics — bacterial functional profile — KO profile — 16S

rRNA — PiCRUST
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Humans are hosts to an enormous variety of microbes.
Some of these are invaders that can cause serious dis-
eases, but there is a lot of microbes that are essential
to human life. Particularly gut microbiome is crucial
for the regular function of the digestion tract. In the
last years, it was proven that irregularities in gut micro-
biome are linked to many conditions ranging from di-
gestion tract diseases like inflammatory bowel disease
to antibiotic resistant infections [1]. Unfortunately,
because of a big variety of present bacterial species
and the impossibility to cultivate most of them in lab-
oratories, the gut microbiome is not well described.
Modern approaches in microbiology, specifically high-

throughput sequencing and metagenomics, seem to
be able to solve these problems and allow us to study
microbiome thoroughly and understand how it is con-
nected to human health [1, 2].

Since most of the bacteria present in gut micro-
biome has not been studied yet, the main question is
not which species of bacteria a specific sample con-
tains, as we lack named species for most of the bacteria
present in the sample, but instead what can the bacte-
ria do (i.e. lipid digestion or resistance to antibiotics).
This task is called functional profile prediction and it
will be the main focus of this paper. Functional profile
prediction is based on the observation, that bacteria
species with similar RNA sequence tend to have sim-
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Figure 1. Diagram showing steps of bacterial
composition analysis
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ilar functions, whereas between species with small
RNA similarity the functional profile differs [1].

In this paper, we will introduce existing bioinfor-
matics tools for functional profile prediction, namely
PiCRUST, and Tax4Fun. We will discuss the different
methods they use for prediction. Then we will design
a new tool inspired by them, that will implement the
classic methods for functional profile prediction, but
should also include a new approach to this problem
based on linear regression.

In Chapter 2, I will define theoretical background
needed to understand this paper. In Chapter 3, I will
discuss the created tool. Chapter 4 contains experi-
mental evaluation of the tool. In the last Chapter, I will
talk about the future work and possible extension of
the created tool.

In this section, we will define the field this paper relates
to - metagenomics. Then, we will discuss the details of
the functional composition analysis of a given sample.
This section is based mostly on papers from Xochitl
C. Morgan [1], Jay-Hyun Jo [3] and Andreas Hiergeist
[2], where more detailed information can be found.

2.1 Metagenomics

Metagenomics is a study of genetic material recovered
directly from samples. It does not require isolating
the DNA of individual species, neither cultivating in
laboratories.

There are two main types of analysis often per-
formed in metagenomics. The first one is taxonomic,
where the main question is: Which bacteria are present
in the given sample? The second one, the main focus
of this thesis, is functional: What can the bacteria in
this sample do?

The steps of taxonomic analysis can be seen in
Figure 1.

2.2 16S rRNA

To minimize the length of the DNA sequence that
must be processed to determine the species and func-
tional profile, only a part of genetic information, called
marker gene, is used. Marker gene needs to have the
following attributes:

e It is present in every organism we want to study

o It is unique for every species

e [t is similar for closely related species and dif-
ferent for non-related species

For bacteria, a commonly used marker gene is 16S
RNA. It contains conserved regions, that are consistent
among all species, and variable regions, that are differ-
ent. In the taxonomic analysis, we study and compare
the variable regions to determine which species we are
dealing with.

2.3 Functional profile analysis

In functional analysis, we want to find the different
metabolic functions of organisms in the sample, as
well as to estimate their abundance — how many or-
ganisms in the sample have this function. The process
of functional analysis is shown in Figure 2. Functional
profiles have the form of KO identifiers with abun-
dance in the corresponding sequences. KO identifiers
refer to molecular functions and can be found in the
Kegg Orthology database [4]. The functional profiles
represent which bacterial functions in what quantity
are present in the given sample.

The input of functional analysis can be either raw
sequences or already preprocessed and clustered data
(OTU table — a matrix that gives the number of reads
per sample per OTU). For the purpose of explaining all
steps of the analysis, we will suppose we start with raw
DNA (or RNA in microbiome research) sequences.

In the data preprocessing, DNA sequences that
are very similar (95-98% similarity) are clustered into
groups called OTUs. OTU stands for the operational
taxonomic unit and is used as a synonym to species
since we lack a real, named species corresponding
to most of the clusters. Each OTU has an identifier,
but these are generic and are not consistent among
different samples, so to represent OTUs we use the
nucleotide sequences.

The basic principle of functional analysis is to
compare representative sequences of OTUs to a refer-
ence database that contains the functional profile of
previously studied organisms and find the best match.
For the genetic material that cannot be paired with
a known organism, we can search for the most simi-
lar organisms and deduce the functional profile from
there.

A big question is, how to find the most similar
organisms to a given sentence. Various methods for
solving this problem exist. The naive algorithm is
based on analyzing the sequences and finding the most
similar one - these methods will be further called dis-
tance based. More advanced algorithms are based on
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Figure 2. Diagram showing steps of functional
analysis of a sample
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Figure 3. Example of a phylogenetic tree
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constructing a phylogenetic tree, that represents evolu-
tionary relationships between the species, of all OTUs
and deduces the estimated functional profile from the
tree structure.

2.3.1 Functional analysis methods
In this section, I will describe two distinctive groups
of methods for functional analysis.

Phylogenetic tree based algorithms

This group of methods is commonly used in bioin-
formatic tools for functional analysis. It is based on
constructing a phylogenetic tree which is a graph that
represents evolutionary relations between organisms.
Each node of such a tree represents a species. Some of
them, specifically the leaves, are living species, while
the others may be extinct or only theoretical. The
common parent of two nodes is their most probable
evolutionary ancestor.

An example of a phylogenetic tree can be seen in
Figure 3. This is a tree where the lengths of individual
lines between nodes represent the estimated time of
evolution. If the line is short, the nodes it connects
are very similar, since the time for evolution is short
which implies fewer changes in the genome compared
to the long lines.

From the phylogenetic tree, we can estimate the
evolutionary relationship between different species.
Then it is possible to infer a correct combination of
known functional profiles for all species for which
the functional profile was not found in the reference
database.

The inference of unknown functional profiles can
be done by finding the nearest nodes with known pro-
files. We can search for a certain number of known
profiles, or limit the search by sequence similarity to
the investigated. After we have a set of nodes with
known profiles, we compute a consensus profile based
on the distance to the investigated node — it can be
a simple average, or closer nodes may have a bigger

weight than the more distant ones.

Distance based algorithms

The basic idea used in these algorithms is my orig-
inal work that I introduced in my masters thesis. It
is based on analyzing the representative sequences
of given OTUs and comparing them to reference se-
quences with known functional profiles. The resulting
functional profile is then inferred from the most similar
reference OTUs.

To speed up the search, the similarity between
sequences is usually precomputed and stored in a dis-
tance matrix. The rows and columns of the distance
matrix represent the OTUs and the numbers in the
matrix represent the distance of OTUs in the corre-
sponding row and column.

To compute the similarity between sequences, dif-
ferent methods can be used. One of them is to simply
count the number of equal characters in their sequence
alignments. Others punish the differences according to
their evolutionary probability — because of the differ-
ent chemical nature of the nucleotides in RNA, certain
changes in the sequences are more probable than the
others. There are various matrices that express the
probability of interchange between the nucleotides [5].

2.4 Existing tools

The most used tools for functional analysis are Picrust
[6] and Tax4Fun [7]. They both implement the phylo-
genetic tree approach. The main difference between
them is their reference database. Picrust uses Green-
genes [8], which is outdated, while Tax4Fun uses Silva
[9], which is a newer database that is still frequently
updated. To eliminate this disadvantage, the creators
of Picrust developed Picrust 2, which is not dependent
on reference database [10]. Unfortunately, Picrust 2 is
still in beta version.

Picrust is a bioinformatic software package imple-
mented in Python and R, while Tax4Fun is an open-
source package for R. Tax4Fun is newer and tries to
alter the prediction method of Picrust to make it more
accurate. It is also easier to use and faster.

The work-flow of Picrust can be divided into two
parts, Gene content inference, and Metagenome in-
ference. In Gene content inference, Picrust takes the
reference OTU table from Greengenes database and
gene content table from IMG, which is a table contain-
ing functional profiles for known genomes. It creates a
tree featuring all OTUs from the reference database us-
ing ancestral state reconstruction algorithm. For OTUs
with an unknown functional profile, an estimated pro-
file is computed, using the position of the given OTU
in the phylogenetic tree and the closest OTUs with a
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known functional profile. This step is independent on
the sample, so it is computed only once. [11]

In Metagenome inference, Picrust takes an user-
provided table of OTUs, and using the gene content
table from the previous step, predicts metagenomic
content of the given sample. The prediction is done
by summing up the functional profiles (obtained in
the previous step) corresponding to OTUs in the input
table while taking into account their abundance. [11]

In my masters thesis, I have created a new tool for
functional profile prediction. It is not dependent on a
reference database, as Picrust is. It implements various
methods for dealing with OTUs with the unknown
functional profile.

The dataflow of the designed tool can be seen in
Figure 4. The yellow modules (Input parser, Known
profile resolver, Output generator) will be the same for
every sample and method for dealing with unknown
OTUs, the pink one (Unknown profile resolver) differs
and its accuracy is the target of the experiments.

The Input parser loads the data from the input
sample. Then the Known profile resolver determines,
which OTUs have known functional profiles, and which
do not. The unknown ones are then processed by
the Unknown profile resolver, which tries to estimate
the most probable KO profile composition. Both the
known and the estimated profiles are then merged to-
gether in the Output generator.

The Unknown profile resolver currently imple-
ments three methods for functional profile prediction,
two are distance based and one uses a phylogenetic
tree. They will be described in detail in the following
sections. The results of the experiments will also be
given.

The green modules (KO profiles, OTU similarity)
represent data sources. They are precomputed and
saved in files, but the tool contains code for the pre-
computation so it is possible to repeat it for other ref-
erence databases. KO profiles data source is a table of
known species with corresponding KO profiles. OTU
similarity is a data source of similarity between OTUs
with known and with unknown functional profiles. It
can either be a similarity matrix or a phylogenetic tree,
or anything else, that somehow represents similarity
between OTUs.

To simulate the real-life situation, where we do not
have information about many functional profiles, I
have created a version of the reference table with a

Figure 4. Design of the created tool for functional
profile prediction based on 16S rRNA data
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fraction of rows missing. For 0% missing, the predic-
tion should be 100% accurate, since we have all the
data and no estimation is needed.

For each method, the accuracy was tested on 10
artificial samples. To simulate missing functional pro-
files, a part of reference KO profile table was randomly
deleted. The ratio of the deleted table was incremen-
tally increased, from 0% to 90%, to see how much the
accuracy drops with more profiles missing. Since the
deletion from the reference table was randomized, this
step was performed 10 times. To summarize, for each
ratio of missing functional profiles, I performed 100
tests.

In the visualization of the results of the experi-
ments [ always show the correlation between the ex-
pected and the computed functional profile in a box-
plot. The y-axis will be the correlation and the x-axis
the ratio of the known functional profiles. This way
we can see how much the accuracy drops when we do
not have enough reference data.

The correlation coefficients are computed as Pear-
son Product-Moment Correlation, which shows the
linear association between two vectors. The values
of the coefficients can range from -1 to 1, where 0
means no association between the vectors, values big-
ger than 0 show positive association and values smaller
than 0 show negative association. The proximity to

-1 and 1 show the strength of the association. Gen- 2
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erally, values bigger than 0.5 are considered a strong
association [12].

4.1 Distance based methods

I have experimented with two methods for functional
prediction based on distance. I have used the Green-
genes database, for which a global alignment of all
sequences is available. Greengenes database was cho-
sen so I can compare my results with Picrust in the
future. However, the tool is not dependent on the
database, and if another multiple sequence alignment
data are used, the prediction will work.

Both methods look for the most similar OTUs with
a known functional profile. The similarity is measured
by the distance of the multiple sequence alignment.
The number of similar sequences that are taken into
account is an attribute I tried to experiment with. The
best results were achieved when the estimated profile
was computed as the average of profiles of 4 most
similar sequences.

The difference in the implemented methods is the
computation of the distance metric. The first one
simply counts the number of similar symbols in the
multiple sequence alignment. The second one uses a
transition/transversion scoring matrix for nucleotides.
It takes into account the chemical attributes of RNA
bases and the probability of exchange of the nucleotide
pairs.

Surprisingly, better results were achieved with the
simpler method, that does not respect the chemical
properties of nucleotides. This might be caused by a
wrong approach to gaps in the scoring matrix, or by
the fact that the distance matrix was computed from
the global alignment of all Greengenes database se-
quences, so the impact of alignment errors might be
significant. Therefore, with respect to the limited scope
of this paper, this is the only method which will be
discussed further. We can see the results of the average-
finding method in Figure 5.

4.2 Phylogenetic tree based methods

I have also implemented a method based on a phyloge-
netic tree. It uses a UPGMA (short for “unweighted
pair group method with arithmetic mean”, an algorithm
for creating a phylogenetic tree based on sequence sim-
ilarity) method to compute a phylogenetic tree of all
the OTUs from the Greengenes database, both the ones
with known and unknown KO profiles. Then the un-
known OTUs are determined as the average profile of
OTUs which are connected to it in the tree.

The tree is computed before the functional predic-
tion. The script for the tree creation is a part of the

Figure 5. Evaluation of a distance based method for
functional prediction on complete functional profiles.
The x-axis represents the ratio of known profiles in the
sample, the y-axis represents the correlation between
expected and computed result.
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Figure 6. Evaluation of a phylogenetic tree based
method for functional prediction on complete
functional profiles. The x-axis represents the ratio of
known profiles in the sample, the y-axis represents the
correlation between expected and computed result.
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tool, so the process can be repeated for any reference
data.

In UPGMA, each item is paired with the closest
item by a given distance matrix. The pair is connected
and is assigned a parent node in the resulting tree. In

the name of the node, I store names of all its children. 3

That means that the root has names of all the OTUs in
the reference database. The closest OTUs to any OTU
are the ones with which it was connected.

When looking for the most similar OTU, I search
the tree and find, in which point the searched OTU
was connected with some other node. The name of the
node with which it was connected are the ones that are
the most similar, and the estimated profile is inferred
from them. The results can be seen in Figure 6.

4.3 Comparison
As we can see, the method based on average is slightly
better than the one based phylogenetic tree. However,



Figure 7. Evaluation of a distance based method for
functional prediction on the rarest functions. The
x-axis represents the ratio of known profiles in the
sample, the y-axis represents the correlation between
expected and computed result.
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the correlation between expected and computed pro-
files is surprisingly high, over 99% even when only
10% of the profiles are known. Picrust and Tax4Fun
also report a high prediction accuracy [11, 13].

The high correlation can be caused by a number
of reasons, the most probable is common metabolic
functions — each bacteria must have basic functions
for translation, transcription, and processing of com-
mon metabolites. This is the part of the functional
profile, that is the same for every species of bacteria,
independent on the sample. A number of KO specific
for a certain species of bacteria is much smaller, so it
might not have that much of an effect for the correla-
tion.

Since every bacteria has common metabolic func-
tions, it is expected that they will be present in every
sample. More interesting are the functions that are
exclusive for a certain species. From this reason, |
have altered the correlation so that it takes into account
only those KOs, that are present in less than 1% of the
species in the reference table.

With this approach, the results between the meth-
ods are more different, so it is more useful for compar-
ing different algorithms. We can see the new results in
Figures 7 and 8. Now, we can see that the correlations
drop more significantly, and with only 10% of the pro-
files known, we are at the 60% match. The difference
between the methods is still minimal, which might
indicate, that while 16S rRNA is immensely useful as
a species identifier, the connection between the 16S
sequence and functional profile is not very significant
and to predict functional profile more accurately, we
need to look at the whole genome. To confirm this
hypothesis, more analysis and evaluation have to be
performed.

Figure 8. Evaluation of a phylogenetic tree based
method for functional prediction on the rarest
functions. The x-axis represents the ratio of known
profiles in the sample, the y-axis represents the
correlation between expected and computed result.
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In this paper, I have introduced functional profile anal-
ysis, which is an important part of metagenomic re-
search. I have discussed the most used methods and
created a tool that implements them.

The focus of this paper is the comparison of dif-
ferent methods for functional analysis. I have shown,
that the classic approach to experimental evaluation —
when we look at the whole functional profile — gives
a different result than the evaluation that looks only at
the more specific functions.

The significance of the evaluation of the specific
functions is that it gives us more detailed information
about a sample. The common metabolic functions are
a part of every bacteria species, so it is not a surprise
to find them in every sample. More rare functions are
more informative and harder to predict.

In the future, I would like to compare my tool with
Picrust and Tax4Fun. It would be interesting to see
how they stand in the tests of only specific KOs since
they are widely used in bioinformatics research. I will
also add some more methods for functional analysis,
including one based on linear regression, to try a more
computer-sciences inspired approach.

I would like to thank my supervisor Ing. Stanislav
Smatana for his help.
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