
9
http://excel.fit.vutbr.cz

Android App for Security Monitoring of
Communication
Karolı́na Klepáčková*

Abstract
Global problem with mobile applications whose provide some kind of internet communication is
that any of them doesn’t provide information about used protocols. Users connecting to public
networks are at risk because attackers can eavesdrop on unsecured communications. Knowing the
communication protocol and data provided to the application, a knowledgeable user can decide if
it’s trustworthy or not. This article aims at an Android application which enables security monitoring
of other applications’ communication which is called AppCheck. Describes the solution of major
problems for analyzing network communication of given mobile application. A reader can find out
useful information about how to circumvent the Android restrictions on getting information from other
applications. Specifically, it focuses on packet processing inside a mobile device and allocating data
flow to individual applications. Thanks to the solution of these problems it can find out how much is
the application safe. The implemented application can catch network flow of another application and
save it into pcap file which is readable eg. via Wireshark tool. This file is used for making analytic to
recognize how much packets were sent in a secure way. All of these features are provided without
the necessity of having higher user privileges than the common user has.

Keywords: Packet bypass — Android — Security

Supplementary Material: Youtube video of AppCheck — AppCheck on Google Play

*xklepa04@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

This article describes the major pillars of my diploma
thesis called Android App for Security Monitoring of
Communication. The first idea of making an applica-
tion like that came up from finding up a packet in a mo-
bile device network communication which included
plaintext string containing application’s secret sent via
HTTP protocol as you can see in the figure 1. The
problem with this protocol is that it’s not encrypted. It
means that packet content is sent in a readable form.
That’s why I decided to design an application which
can help a knowledgeable user to recognize potential

security issue.
One of the main security issues comes up with

connecting a mobile device to a public wireless net-
work. Anyone can join it and listen to other’s network
communication. And it’s the moment when a secure
protocol comes in play. If you know that an appli-
cation including your personal data implements only
HTTP1 instead of HTTPS2, which is encrypted, then
you might recognize that your privacy can be intruded.

1HTTP = Hypertext Transfer Protocol
2HTTPS = HTTP with Secure Sockets Layer (SSL) or Trans-

port Layer Security (TLS) protocol

http://excel.fit.vutbr.cz
https://www.youtube.com/watch?v=oKr-D67teo4&feature=youtu.be
https://play.google.com/store/apps/details?id=cz.vutbr.fit.appcheck
mailto:xklepa04@stud.fit.vutbr.cz


Figure 1. A secret of an unknown application caught via Wireshark tool within 5 minutes of monitoring the
network flow of mobile device. You can see it in a row with full request URI.

My application can provide information about the
number of packets covered by secure protocol instead
of insecure one. Moreover, it permits a user to choose
if it will include statistics of all other applications or
just one of them. Knowledge of which application
sends your data unsecured might push you to unin-
stall it and never use it again. Or on the other hand, if
you have a suspicious application which is somehow
useful for you then you can analyze it and recognize
that it’s not dangerous. From my point of view, it’s
really important to keep personal data safe. That’s why
I searched for some applications which can provide
additional information about how secure other appli-
cations are. I found some available on Google play
but their biggest drawback is that they might not be
understandable for a common user.

2. Existing security applications

I would like to briefly describe the most useful applica-
tions I found. They are: Netstat Plus3, Packet Capture4

and NetCapture5. The last of compared applications is
AppCheck which is created by me. For a better idea of
individual applications, I have created a summary table
of their properties. You can see key features provided
by each application in the table 1.

I will focus on clarifying the items in table 1. UDP
and TCP indicate which transport protocols are tracked.
Same as IPv4 and IPv6 says if are they supported and
specified for each network connection. Destination
and source port indicates if you can find out numbers
of these ports. SSL support means that the applica-

3Available at: https://play.google.com/
store/apps/details?id=com.rinacode.android.
netstatplus&hl=en_US

4Available at: https://play.google.com/store/
apps/details?id=app.greyshirts.sslcapture&
hl=en_US

5Available at: https://play.google.com/store/
apps/details?id=com.minhui.networkcapture&
hl=en_US

NP PC NC AC
UDP Y N Y Y
TCP Y Y Y Y
IPv4 Y Y Y Y
IPv6 Y Y Y Y
Destination port Y Y Y Y
Source port N N N Y
SSL N Y Y N
App info N N N Y
Show connections Y Y Y Y
Connection state Y N N Y
Track send packets N Y Y Y
Track packet size N N Y N
Packet timestamp N Y Y N
Packet content info N Y Y N
Track one app N Y Y Y
Track multiple apps N N N Y
Track whole flow/app apps N Y Y Y
Save flow to pcap file N Y N Y
Analyze network security N N N Y

Table 1. Table of comparison of individual
applications according to their properties.
Abbreviations of compared applications: NP = Netstat
Plus, PC = Packet Capture, NC = NetCapture, AC
= AppCheck. Abbreviations of table values: Y = YES,
N = NO.

tion allows you to monitor content of packets which
are using the HTTPS protocol. Application info pro-
vides you if there is specified the application name,
its version, and its package name. This information
is helpful in accurately identifying the application we
want to monitor. Show connections provides informa-
tion about the current network connection and the state
info is connected to it. Track send packets tells if the
applications is able to record ongoing communication.
This also includes information about the size, times-
tamp, and content of each packet. Furthermore, it is
good for the user to know what possibilities he/she
has in choosing the monitored application. If it’s sin-
gle application, multiple applications or all of them.

https://play.google.com/store/apps/details?id=com.rinacode.android.netstatplus&hl=en_US
https://play.google.com/store/apps/details?id=com.rinacode.android.netstatplus&hl=en_US
https://play.google.com/store/apps/details?id=com.rinacode.android.netstatplus&hl=en_US
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture&hl=en_US
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture&hl=en_US
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture&hl=en_US
https://play.google.com/store/apps/details?id=com.minhui.networkcapture&hl=en_US
https://play.google.com/store/apps/details?id=com.minhui.networkcapture&hl=en_US
https://play.google.com/store/apps/details?id=com.minhui.networkcapture&hl=en_US


Local socket Virtual network

request

VPNService Local tunnel Remote tunnel Server socketConcurrent
linked
queue

Virtual network

response

Figure 2. Packet bypass visualization through interfaces designed by author of article [1]. Blocks with violet
color are used for sending packets from a mobile device. The yellow ones are used for receiving them.
Individual blocks used for packet handling inside the mobile device can be seen in the figure separated by
a hatched line on the left. Blocks used for data sending to the desired destination are located on the right.

For later processing, it is also necessary to save the
pcap file for the recorded network flow. The last crite-
rion is whether the application supports analyzing the
recorded network flow.

To make it clear how are contents of packets using
HTTPS protocol revealed. It’s possible by installing
a certificate offered by the application. As a result,
a man-in-the-middle attack on a given communica-
tion can be made, and both communicating parties are
forced to send their messages through an attacker. In
this case, through the installed application. The in-
stallation of user certificates has undergone a change
with Android N operating system. However, even with
Android N and later ones there are ways to install such
a certificate. If we want do do such operation in an
application we have to customize trusted certificate
authorities using Network Security Configuration.

To sum up there are few other solutions providing
info about sent packets content. But they have a big
disadvantage in the way they show up info for the user.
It means that the added value of my application over
others available on the market is the final analytic of
the recorded network traffic. It also provides the ability
to record multiple applications at the same time, while
others provide the ability to record only one applica-
tion or all of them. In contrast, two of the three tested
applications allow you to look into HTTPS-secured
communications, which AppCheck cannot. The last
huge different is that AppCheck doesn’t provide infor-
mation about packet content. It’s because the main aim
of the application is providing analytic of transferred
packets instead of let user search in them.

3. Packet capture on Android

The core of my application is to work with packets and
their contents. The first prerequisite to work with them
is to capture them as they pass through the network
elements of the mobile device. VPN is useful for
this purpose as it can be implemented by VpnService
class in android.net package. It creates a point in the
application through which all the data from and to the
mobile device passes. Within this point it is necessary
to take over individual packets and forward them to
their original destination. As long as individual packets
are forwarded, it is possible to save them for later
processing. Subsequently, the analysis of the entire
network flow can be processed from the individual
stored packets.

The implementation of the VPN itself can be solved
in two ways. The first is to create a VPN connection to
a remote server, where it forwards the individual pack-
ets and where it is routed back to the application. The
second option is by bypassing packets. In this case,
the created VPN connects only to the virtual interfaces
created within the mobile device. Thus, packets are
never sent to remote servers. The thing which is done
here is both they are stored in a pcap file and sent to its
original destination via the mobile device’s output net-
work interface. So the second option will be referred
to in the article as a packet bypass.

As the theoretical basis of packet capture, I’ve
used mainly two articles. The first called Android
VPN Service Explained with Packet Bypass Example
Program [2] was from Mr. Terrence Sun, who focused
on packet capture theory. It includes a code example



Figure 3. Schema of solution used for packet handling in AppCheck application. The yellow color indicates the
flow of TCP packet. The violet color indicates flow of UDP packet. If any of these blocks has both colors it
means that it’s used for bypassing any type of packet. Capturing and saving packets into pcap file is handled in
the Vpn service block.

of how to create a VPN connected to remote server
and a verbal comment saying in which part of the
implementation should be packets captured and how
to handle them. It inspired me for the first version of
my application for which I used VPN connected to
remote server. The approximate guidance given in this
article can be used for both VPN usage and packet
bypass usage.

The first article can lead to the idea that it would
be possible to capture packets only within a mobile
device, i.e. without a remote server. However, it does
not specifically mention such a variant. Contrary to
this, the second article [1] focuses more on bypass and
capture of packets only within a mobile device. It pro-
vides more accurate information on how to implement
the mentioned solution which has become crucial for
packet capture in my application.

Figure 2 illustrates packet tunneling through inter-
faces designed by the author of the article [1]. The
implementation blocks that are used for sending pack-
ets from a mobile device has violet color. The yellow
ones are used for receiving them. Individual blocks
used for packet handling inside the mobile device can
be seen in the figure separated by a hatched line on the
left. Conversely, blocks used for data sending to the
desired destination are located on the right.

My application uses almost the same packet by-
pass as it is mentioned in article [1]. Thanks to this
approach it uses secure way to catch packets and ex-
tract information from them. It’s done with the help
of VPN and virtual tunnels through which the packets
pass. So my solution provides a secure way to pass
data. Packets aren’t sent to any server, so they cannot
be caught on the way out of the mobile device. An-
other advantage is that I’m not using any suspicious
server to pass packets through.

4. Implementation

In chapter 3 I mentioned two main articles that influ-
enced my work. I tried to solve my first implementa-
tion with the help of VPN, as it is mentioned in the
article by Mr. Sun [2]. The VPN was connected to
a remote server running on Raspberry PI. This solution
would be sufficient if I had my own server with enough
capacity and secure connection. However, my imple-
mentation was unsuitable and unstable. The server did
not have sufficient capacity for more than 3 users and
the connection to it was insecure. For these reasons, it
was necessary to find a different solution. Article [2]
has brought me the idea of dealing with packet capture
only within a mobile device. Thanks to it I found the
second article, where the author is practically focusing
on this kind of implementation. It doesn’t provide any
code example but it has properly subscribed packet
flow diagrams.

As I already mentioned, my application uses a packet
bypass. For this purpose, I have created a Bypass
Packet Capture library that takes care of all the bypass
logic. There are several packet handling blocks imple-
mented in the library. The first is a VPN that provides
communication between a locally created socket and
a local tunnel. It is divided into two types depending
on the protocol used - TCP and UDP tunnel. Servers,
which communicate between the tunnel and the request
queue (concurrent linked queue), are resolved in a sim-
ilar way as tunnels. It means there are also 2 types.
The last part is a remote tunnel that is connected to
the concurrent linked queue. The entire data stream
is send from/to the destination IP address through this
remote tunnel.

The second library which I created for this appli-
cation a Pcap library6 hedges the work with pcap files.

6The Pcap library is publicly available at GitHub link: https:
//github.com/klepackovakarolina/pcaplibrary

https://github.com/klepackovakarolina/pcaplibrary
https://github.com/klepackovakarolina/pcaplibrary


Figure 4. Screenshots from AppCheck application.

It implements the necessary methods for creating pcap
files from a byte stream that is read from a VPN in
an endless cycle. Generally, the pcap file structure
consists of a global 24-byte header, a pcap header
of 16 bytes for each packet and their bodies. Before
the packet forwarding is started, a pcap file only with
global header is created in a local storage. Then in
each iteration, a dummy L2 packet header is created
via this library for each packet passing through the
VPN. It does not carry any essential information but
it’s necessary for creating correct file structure. Then,
the pcap header is appended to the particular packet
and sent data are finally added.

The last step is creating the analysis of the recorded
network flow from the saved file. I use the Okio7 li-
brary to process individual packets written in the pcap
file. It provides functionality such as: get packet’s
protocol, destination port, source port and many other.
The implemented application currently provides infor-
mation about the number of packets sent by HTTP
or HTTPS protocol, or by completely different proto-
cols such as UDP. Specifically, packets are counted
based on the port to which they communicate. If it
was sent to port 80 then it is recognized as a packet
with HTTP protocol. If a particular packet was sent
to port 443 then it is an HTTPS protocol. All others
are marked as ”other” in the resulting analysis. It is
showed in the figure 4 in the 3rd picture from left. You
can seen that during the recording of the communica-
tion, 532 packets were sent by HTTP, 1175 by HTTPS
and 1933 by other protocols. This analysis was created
by monitoring the flow of Chrome8 application within
3 minutes.

7Available at: https://github.com/square/okio
8Available at: https://play.google.com/store/

apps/details?id=com.android.chrome&hl=en

Figure 3 shows the outbound packet flow (i.e. from
a mobile device to the Internet) by blocks implemented
in AppCheck. The individual sent packet flows in the
direction shown by the arrows. The first block where
the created local socket gets is VPN. Based on the
transport protocol recorded in the header, it decides
which local tunnel to use. However, before the packet
is sent to the tunnel, a dummy L2 header and a pcap
packet header are created for it. They are written into
the resulting pcap file together with the contained data.
It means that the packet capturing and saving into file
is included in the Vpn service block. After writing
to the file, the particular tunnel forwards the packet
to the corresponding server. It remembers source and
destination IP address information, ports on which it is
communicated, and local tunnel mapping to a remote
tunnel. Then it sends the request to the concurrent
linked queue from which it is subsequently processed
by the remote tunnel. Then it sends them to the original
destination.

I also solve some other non-trivial issues in App-
Check, such as retrieving information from system
files containing information about established network
connections or mapping individual network connec-
tions to specific applications. Information about con-
nections can be found in files stored in /proc/net/ di-
rectory which are divided by protocols they use , e.g
/proc/net/tcp, /proc/net/tcp6 and others. I map the
individual connections to specific applications using
it’s uid, which can be obtained from PackageManager
class in Android operating system.

https://github.com/square/okio
https://play.google.com/store/apps/details?id=com.android.chrome&hl=en
https://play.google.com/store/apps/details?id=com.android.chrome&hl=en


5. Conclusions
Currently, AppCheck9 gives a comprehensive overview
of installed applications. It provides information about
their name, version, package name and icon. For net-
work connections, it provides source and destination
IP address, source and destination ports, IP version,
transport protocol type, status, and especially the appli-
cation to which the connection belongs. And last but
not least it provides analyze of the number of packets
sent by HTTP or HTTPS protocol, or by completely
different protocols such as UDP.

In order to realize all the functionalities, I chose
such ways that it is not necessary to require a higher
level of authorization than the common user has. It
means that it is not necessary to have root privileges.
This approach is also supported by both the Bypass
Packet Capture and Pcap library.

I tested the functionality of AppCheck on appli-
cations: 9gag10, Chrome11, Slack12, AR measure13,
Remote desktop14, IDOS15, World Newspapers16 and
Network Scanner17. I have made a table 2 for a specific
idea of what the outputs from the application look like.
Each analyzes was made on a different application
where the recording took about 1 minute.

This article should introduce readers to packet by-
passing in a mobile device without using a remote
server. It also provides partial information about packet
capture and processing. The reader should get a com-
prehensive idea of the issue and its possible solution
including an overview of available applications.

9AppCheck is available at Google play: https:
//play.google.com/store/apps/details?id=
cz.vutbr.fit.appcheck.

10Available at: https://play.google.com/store/
apps/details?id=com.ninegag.android.app&hl=
en

11Available at: https://play.google.com/store/
apps/details?id=com.android.chrome&hl=en

12Available at: https://play.google.com/store/
apps/details?id=com.Slack&hl=en

13Available at: https://play.google.com/store/
apps/details?id=ml.kari.armeasure&hl=en

14Available at: https://play.google.com/store/
apps/details?id=com.microsoft.rdc.android&
hl=en

15Available at: https://play.google.com/store/
apps/details?id=cz.mafra.jizdnirady&hl=en

16Available at: https://play.google.com/store/
apps/details?id=com.KayaApps.newspapers&hl=
en

17Available at: https://play.google.com/store/
apps/details?id=com.easymobile.lan.scanner&
hl=en

HTTP HTTPS OTHER
9gag 129 1773 4128
Chrome (Excel@fit page) 18 240 375
Slack 0 850 874
AR measure 0 137 160
Remote desktop 31 37 931
IDOS 2 616 670
World Newspapers 807 482 1467
Network Scanner 7 66 73

Table 2. Table of analyze of individual applications.
Each application was monitored for approximately
1 minute.

Improving my application could include providing
packet content information. Or even disclosure of
packets that have been transferred using the HTTPS
protocol.

Acknowledgements
I would like to thank my supervisor prof. Ing. Adam
Herout Ph.D for valuable advice.

References
[1] . Android capture tool development. blogpost (chi-

nese), May 2018. https://www.jianshu.
com/p/ae4d433597ce.

[2] Terrence Sun. Android VPN service
explained with packet bypass example
program. blogpost (english), Jun 2014.
https://www.thegeekstuff.com/
2014/06/android-vpn-service/.

https://play.google.com/store/apps/details?id=cz.vutbr.fit.appcheck
https://play.google.com/store/apps/details?id=cz.vutbr.fit.appcheck
https://play.google.com/store/apps/details?id=cz.vutbr.fit.appcheck
https://play.google.com/store/apps/details?id=com.ninegag.android.app&hl=en
https://play.google.com/store/apps/details?id=com.ninegag.android.app&hl=en
https://play.google.com/store/apps/details?id=com.ninegag.android.app&hl=en
https://play.google.com/store/apps/details?id=com.android.chrome&hl=en
https://play.google.com/store/apps/details?id=com.android.chrome&hl=en
https://play.google.com/store/apps/details?id=com.Slack&hl=en
https://play.google.com/store/apps/details?id=com.Slack&hl=en
https://play.google.com/store/apps/details?id=ml.kari.armeasure&hl=en
https://play.google.com/store/apps/details?id=ml.kari.armeasure&hl=en
https://play.google.com/store/apps/details?id=com.microsoft.rdc.android&hl=en
https://play.google.com/store/apps/details?id=com.microsoft.rdc.android&hl=en
https://play.google.com/store/apps/details?id=com.microsoft.rdc.android&hl=en
https://play.google.com/store/apps/details?id=cz.mafra.jizdnirady&hl=en
https://play.google.com/store/apps/details?id=cz.mafra.jizdnirady&hl=en
https://play.google.com/store/apps/details?id=com.KayaApps.newspapers&hl=en
https://play.google.com/store/apps/details?id=com.KayaApps.newspapers&hl=en
https://play.google.com/store/apps/details?id=com.KayaApps.newspapers&hl=en
https://play.google.com/store/apps/details?id=com.easymobile.lan.scanner&hl=en
https://play.google.com/store/apps/details?id=com.easymobile.lan.scanner&hl=en
https://play.google.com/store/apps/details?id=com.easymobile.lan.scanner&hl=en
https://www.jianshu.com/p/ae4d433597ce
https://www.jianshu.com/p/ae4d433597ce
https://www.thegeekstuff.com/2014/06/android-vpn-service/
https://www.thegeekstuff.com/2014/06/android-vpn-service/

	Introduction
	Existing security applications
	Packet capture on Android
	Implementation
	Conclusions
	References

