
9
http://excel.fit.vutbr.cz

Fuzz testing of program performance
Matúš Liščinský*

Abstract
Coding new features is sometimes referred to as ”bringing new issues into the program”. And to
detect these issues, especially performance issues, we often have to reach the point where ordinary
inputs can never get. In this work we aim to construct automatic generator of inputs whose task
will be to trigger performance fluctuations. Classical solution to automatic generation is so called
fuzz testing, which is unfortunately focused on functional bugs only. So we propose to tune its rules
and ways of processing the information about program run, to particularly trigger the performance
bugs. We integrate our fuzzer into a performance profile manager Perun, which stores data about
every run as a profile and can compare profiles of different versions. This way, we can prove that
executing with certain file takes more time or memory. We tested our solution on several artificial
projects which its potential when the time of program run was extended severalfold. The benefit of
such solution would help developers regularly test every version of project for performance bugs
and avoid them completely by automatically finding new faulty inputs.

Keywords: Performance bugs — Fuzz testing — Workload mutation — Worst-case — Algorithmic
vulnerability — Denial-of-service

Supplementary Material: Project repository

*xlisci02@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Nowadays, when talking about software aspects, de-
velopers tend to focus more and more on program
performance, particularly in case of mission-critical
applications such as those deployed within aerospace,
military, medical and financial sectors. Every project
can be characterized by some time constraints such
as a response to a specific action, a sampling time, or
simply its runtime. When measuring performance, it is
important to focus on system parameters that are signif-
icant to its performance. For example, we can collect
data from the reactor every tenth of a second and if the
system could not process and evaluate the data in the
desired time interval, we would report a performance
issue.

Performance bugs are not reported as often as func-
tional bugs, because they usually do not cause crashes,
hence detecting them is more difficult. Moreover, they
tend to manifest with big inputs only. However, many
performance patches are not that complex. So the
fact that a few lines of code can significantly improve

performance motivates us to pay more attention to
catching performance bugs early in the development
process.

Unexpected performance issues usually arise when
programs are provided with inputs (often called work-
loads) that exhibit worst-case behavior. This can lead
to serious project failures and even create security is-
sues. Because, precisely composed inputs send to
a program may, e.g., lead to exhaustion of comput-
ing resources (Denial-of-Service attack) if the input is
constructed to force the worst case.

Let us assume an unbalanced binary tree. It is ex-
pected to consume O(n.log(n))) time when inserting
n elements, however, if the elements are sorted before-
hand, the tree will degenerate to a linked list, and so it
will take O(n2) time to insert all n elements. [1]

Manual performance testing is not a trivial pro-
cess and it expects from testers awareness about used
structures and logic in a tested unit. In contrast, auto-
mated testing brings a more effective way of creating
test cases, which can cause unexpected performance

http://excel.fit.vutbr.cz
http://github.com/tfiedor/perun
mailto:xlisci02@stud.fit.vutbr.cz

1

2

3

4

5

3

4

5

2

1

"32451" "12345"

Figure 1. Unbalanced binary tree degenerating to
a linked list when a sorted list is inserted

fluctuations in the target program. Unfortunately, cre-
ated test cases might not detect hidden performance
bugs, because it does not cover all cases of inputs. So
in order to avoid this it is appropriate to adapt more
advanced techniques such as the fuzzing.

Fuzzing is a testing technique used to find vulnera-
bilities in applications by sending garbled data as an
input and then monitoring the application for crashes.
Even only an aggressive random testing is impressively
effective at finding faults and has enjoyed great success
at discovering security-critical bugs as well. So why
should not we use fuzzing to discover implementation
faults affecting performance?

State-of-the-art mutational fuzzers include Amer-
ican Fuzzy Lop (AFL) [2] , in-process project lib-
Fuzzer [3] and many others, but these are primarily
focused on finding functional bugs. Nevertheless, re-
cently a performance-oriented AFL variant called Perf-
Fuzz was proposed, which extended AFL’s blind mu-
tation strategies (flipping random bits, substituting ran-
dom bytes, moving/deleting blocks of data, etc.), and
sundry heuristics. [4] PerfFuzz, is a coverage-guided
mutational feedback-directed fuzzing engine that uses
AFL’s CFG graph method and additionally creates
a performance map to improve future usability esti-
mation of tested input. Unfortunately, none of them
allows to add custom mutation strategies which could
be more adapted for the target program and mainly
for triggering performance bugs. In addition, the men-
tioned tools only measure coverage of the program and
do not truly measure performance, such as Perun tool
provides program performance profiling.

Perun is a lightweight open-source tool which in-
cludes automated performance degradation analysis
based on collected performance profiles [5]. More-
over, it offers managing performance profiles corre-
sponding to different versions of projects, which helps
user in identifying code changes that could introduce
performance problems into the project’s codebase or
checking different code versions for subtle, long term
performance degradation scenarios. Nevertheless, trig-

gering a performance change is still highly dependent
on user defined inputs.

In this work we propose new mutation strategies
inspired by causes of performance bugs found in real
projects and incorporating them within Perun as a new
performance fuzzing technique. We believe that com-
bining performance versioning and fuzzing could raise
the ratio of successfully found performance bugs early
in the process.

2. Fuzzing

Fuzzing (fuzz testing) is a form of fault injection stress
testing, where a range of malformed input is fed to
a software application while monitoring it for failures.
[6]

The fuzzing process consists of fuzzer that gen-
erates input test cases either (a) using template or
grammar (so called generational fuzzing) or (b) us-
ing sample workloads (so called mutational fuzzing),
and fuzzing framework which uses generated test cases
to try to trigger crashes, deadlocks or performance
changes in the target application.[7]

Generational fuzzer (sometimes called grammar-
based fuzzer) generates new inputs from scratch based
on a template or a grammar specification. This tem-
plate (e.g. protocol specification) ensures a fuzzer
generates valid data for control fields such as check-
sums or challenge-response messages. On the other
hand, creating a bulletproof template tends not to be
a piece of cake and it is time-consuming.

Mutational fuzzer does not require any complex
specification of input file format, just a set of sample
inputs (even one single sample file sufficies). New
workloads are then generated by application of muta-
tion strategies on these initial so called seeds.

Seeds

Fuzzing
framework Fuzzer

Workload

Target
application

Figure 2. General scheme of mutational fuzzing.

Fuzzer chooses from a set of seeds the candidate
for mutation and creates a new workload, which is
tested on the target application. Framework observes
its behavior and makes a decision whether this muta-
tion is valuable and should be reused for further work
or discarded. The mutation process then continues in
loop either until certain number of crashes is detected
or until specified timeout.

3. Performance Oriented Fuzzing

We aim to construct a lightweight Mutation Based
Fuzzing Tool tuned for detecting performance changes,
i.e. performance optimizations and degradations. An
inevitable element for starting the whole process is the
set of sample seed inputs (or workloads), called input
corpus. The seeds should be valid inputs for the target
application, so the application terminates on them and
yields expected performance.

For different file types (or those of similar char-
acteristics) we want to use variant groups of muta-
tion methods. Just knowledge that seeds are text files,
not binaries, allows fuzzer to avoid binary-tuned fuzz
methods (e.g random removing zero bytes, . . .). So, we
apply domain-specific knowledge for certain types of
files to trigger the performance change or find unique
error more quickly.

Before running the target application with mal-
formed inputs, it is necessary to first determine the
performance baseline, i.e. the expected performance
of the program, to which future testing results will be
compared. Initial testing first measures code coverage
(number of executed lines of code) while executing
each initial seed. After that, median of measured cover-
age data is considered as baseline for coverage testing.
Second, Perun is run to collected memory, trace, time
or complexity resource records with initial seeds re-
sulting into baseline profiles. Basically performance
baseline is a profile describing performance of pro-
gram on the given corpus.

The fuzzing loop itself starts with choosing one
individual file from corpus using heuristic described in
Section 4.3.1 This seed is transformed into mutations
and their quantity is calculated using dynamically col-
lected fuzz stats (Section 4.1). Every mutation file is
tested with the goal to achieve maximum possible code
coverage. First testing phase’s importance resides in
gathering the interesting inputs, which increase the
number of executed lines. After gathering the inter-
esting inputs, the fuzzer collects run-time data (mem-
ory, trace, time, complexity), transforming the data to
a so called target profile and checks for performance
change by comparing newly generated target profile

with baseline performance profile (see [8] for more
details about degradation checks). In case that perfor-
mance degradation has occurred, responsible mutation
file joins the corpus and therefore can be fuzzed in fu-
ture to intentionally trigger more serious performance
issue. The intuition is, that running coverage testing is
faster than collecting performance data (since it intro-
duces certain overhead) and by collecting performance
data only newly covered paths will result into more
interesting inputs.

Listing 1. Pseudocode of Performance Fuzzing
Algorithm
1 results = []
2 base_cov = init_cov_test(corpus)
3 base_profile = init_perun_test(corpus)
4 mutation_rules = choose_rules(corpus)
5 # Fuzzing loop
6 while timeout not reached:
7 interesting inputs = []
8 # Coverage-guided testing
9 while executions_limit not reached and

10 collected_files_limit not reached:
11 candidate = choose_parent(corpus)
12 mutations = fuzz(candidate,

mutation_rules, fuzz_stats)
13 # Gathering interesting mutations
14 interesting_inputs += test_for_cov(

mutations, base_cov, incr_ratio)
15 corpus += interesting_inputs
16 update_stats(fuzz_stats)
17 # Profile-guided testing
18 results += test_with_perun(

interesting_inputs, base_profile)
19 update_stats(fuzz_stats)

Implemented line coverage collection is possible
only in the presence of source files. Nevertheless, our
fuzzer counts on such a situation and provides fuzz
testing even without them. Skipping the first testing
phase fuzzing becomes blinder and less controlled
because of not filtering probably not usable test cases
and degradation has to be caught just after one single
application of a fuzz method.

4. Fuzzer Engine Implementation

4.1 Mutation Methods Selection
Fuzzer distinguishes between text and binary files and
for each defines a set of basic mutation strategies. Fur-
ther, fuzzer can be extended by other strategies based
on file mime-type. We select corresponding strategies
on the beginning, based on first loaded input file.

We propose new mutation techniques inspired by
real projects performance bugs1. Suppose the seed
input is the string ”the quick brown fox jumps over

1See https://accidentallyquadratic.tumblr.com for more info

https://accidentallyquadratic.tumblr.com

the lazy dog”. We propose for text files the following
mutation strategies, each one listed with example of
the mutation results:

(1) double the size of a line:
”the quick brown fox jumps over the lazy
dogthe quick brown fox jumps over the lazy
dog”

(2) remove whitespaces of a line:
”thequickbrownfoxjumpsoverthelazydog”

(3) sort words or numbers of a line:
”brown dog fox jumps lazy over quick the
the”

(4) repeat random word of a line:
”the quick brown fox jumps over the lazy dog
dog dog dog dog dog”

(5) repeat whitespaces:
”the quick brown fox jumps over
the lazy dog”

(6) remove random character, line, or word:
”the quick brown fx jumps over the lazy dog”
”the quick brown jumps over the lazy dog”

(7) prepend or append whitespaces to a line
” the quick brown jumps over
the lazy dog ”

For example, the intuition behind the mutation
rule (4) is mainly based on structure of hash tables. If
the analyzed program internally stores words in hash
tables, then repeated lookup in hash table may induce
degradation.

For binary files we use classical mutation strate-
gies, that are, e.g., used in AFL. Suppose binary file
with content: ”This is !binary! file.\0”. We can then
use the following mutation rules:

(1) remove or add random zero bytes (for C strings):
”This is !binary! file.”
”This is !\0binary! file.\0”

(2) remove or add random byte:
”This is !inary! file.\0”
”This is !binar$y! file.\0”

(3) swap random bite or byte:
”This is %binary! file.\0”
”This is !binary! f&le.\0”

We cannot really apply domain-specific knowledge
for fuzzing binary files in order to trigger performance
changes more often. However, in PerfFuzz [4], authors
show that even with binary mutations one can achieve
degradations quite often.

At last, we will conclude with several mime-type-
specific mutation rules such as:

(1) remove an attribute:
< book id=”bk106” >

(2) remove only attribute name or value
< book id=”bk106” ”457” >
< book id=”bk106” pages=”” >

(3) add or remove the tag
< book id=”bk106” pages=”457” ><library>

in sample line < book id=”bk106” pages=”457” >
of XML file.

Currently we limit fuzzer to work with one file type
according to the input, however fuzzing of multiple
file types is our future work.

4.2 Initial testing
Baseline results are essential for detecting performance
changes, because newly mutated results have to be
compared against some expected behaviour or value.
Initial seeds becomes test cases and are used to collect
performance baselines. By default, our initial testing as
well as testing in fuzzing loop (Section 4.3) interleaves
two phases described in more details below.

4.2.1 Coverage-guided testing
For achieving better results in triggering performance
changes it is generally recommended to monitor the
code coverage during the testing. The intuition is that
by monitoring how many paths are covered and how
often they are executed, we can more likely encounter
a performance bug. In our fuzzer, we use Gcov tool
to measure code coverage information of a program.2

Total count of executed code lines through all source
files represents performance indicator for this phase.
An increase of the value means that more instructions
have been executed, (for example, some loop has been
repeated more times) so we hope that performance
degradation will be triggered as well. Note that the
limitation of this approach is that it does not track
uniquely covered paths, which could trigger perfor-
mance change as well.

4.2.2 Profile-guided testing
Much of the work presented in this section has been
already implemented within Perun tool. Perun runs
the target application with a given workload, collects
performance data about the run such as runtime or
consumed memory, and stores them as a persistent
so called profile, i.e. the set of performance records.

2Gcov tool - https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Analogically to the previous section, we need a perfor-
mance baseline, with which we will compare newly
generated results. Profiles measured on fuzzed work-
loads (target profiles) are then compared with a profile
describing performance of program on the initial cor-
pus (baseline profile). In order to compare the pair of
baseline and target profiles we use sets of calculated re-
gression models, which represents the performance us-
ing mathematical functions computed by least-squares
method. From both of these sets for each function we
select its models with the highest value of coefficient
of determination R2, which represents how well the
model fits the data, as well as its corresponding lin-
ear models. For both pairs of best models and linear
models we compute a set of data points by simple
subtraction of these models. Then we use regression
analysis to obtain a set of models for these subtracted
data points. Moreover, for the first set of data points,
corresponding to best-fit models, we compute the rel-
ative error, which serves as a pretty accurate check
of performance change. All of these regressed mod-
els are then given to the concrete classify functions,
which gradually returns detected degradation for each
function. [8]

4.3 Fuzzing loop
In this section, we described the main loop of whole
fuzzing process and some of its most significant parts.

4.3.1 Parent input selection
Initially, input corpus is filled with seeds, which will
be parents to newly generated mutations (we can call
them parent inputs). During the fuzz testing, success-
ful mutations join this corpus and become parent in-
puts too. The success of the input is represented by
the fitness score, which is a numeric value indicating
workload’s point rating. The total score is calculated
by the fitness function as the sum of two partial rates:

1. Increase coverage rate: The value indicates
how much coverage changes if we run the pro-
gram with the input, compared to base coverage
measured for initial corpus. Basically, it is a ra-
tio between coverage measured with the input
and base coverage:

icovrinput = covinput/covbase.
2. Performance change rate: In general, we com-

pare the newly created profile with that baseline
profile (for details see Section 4.2.2) and the
result is a list of located performance changes
(n particular degradations, optimizations and no
changes). Performance change rate is then com-
puted as ratio of degradation in the result list:
pcrinput = cnt(degradation, result)/len(result)

All parents are kept sorted by their scores, and se-
lection for further mutation consists of dividing the
seeds into five intervals such that the seeds with sim-
ilar value are grouped together. At first, we assign
weight to each interval using linear distribution. Right
after that, we perform a weighted random choice of in-
terval. Finally we randomly choose a parent from this
interval, whereas differences between parent’s scores
in the same interval are not very notable.

w = 1 w = 2 w = 3 w = 4 w = 5

weighted interval selection

0 fitness
scoreparent input

randomly chosen parent from selected interval

Figure 3. Parents are divided to intervals according to
their fitness score. Weighted choice of interval
determines the chunk of seeds, from which final
candidate is randomly chosen.

4.3.2 Fuzzing
After we compute baseline data for input process and
chose appropriate mutation rules, we can use fuzzer
to gradually apply them and generate new workloads.
However, it is necessary to determine how many files
(N) to generate in each iteration of fuzzing loop. We
dynamically calculate the value of N according to the
fuzz statistics of rules during the fuzzing process. Sta-
tistical value of rule f is a function:

stats f = (degs f + icovr f)

where degs f represents the number of occurred degra-
dation by applying rule f , and icovr f stands for how
many times coverage was increased applying rule f .

Fuzzer then calculates the number of new muta-
tions for every rule to be applied in four possible ways:

1. N = 1, the fuzzer will generate one mutation per
rule. The simple solution without the impact of
dynamic collected statistical data and therefore
all the rules are equivalent.

2. N = stats f + 1, the fuzzer will generate muta-
tions appropriately to the statistical value. More
mutation workloads are generated, in case that
rule f has not caused a change in coverage or
performance (i.e stat f = 0) yet, the same result
as in first strategy.

3. Depends on total, which stands for total number
of degradation or coverage increases. The ratio
between stats f and total determines the value
of prob f , i.e. the probability whether the rule f
should be applied.

prob f =

1 if total = 0
0.1 if stats f /total < 0.1
stats f /total otherwise

and N then:

N =

{
1 if random <= prob f

0 otherwise

Until some change in coverage occurs, (i.e.

when total = 0), one new workload to generate
is assigned to each rule. After several iterations,
more successful rules have a higher probability,
so they are applied more often. Rules with very
poor ratio would be highly ignored. However,
since they still may trigger some changes we
round them to probability of 10%.

4. Modified third strategy combined with the sec-
ond one. When the probability is high enough,
that the rule should be applied, the amount of
generated workloads is appropriate to the sta-
tistical value. Probability prob f is calculated
equally, the equation for N is modified to :

N =

{
stats f +1 if random <= prob f

0 otherwise

Our fuzzer uses this method by default, because
it guarantees that it will generate enough new
workloads and will filter not successful rules
without totally discarding them.

4.3.3 Gathering interesting mutations
We usually run fuzzing for a longer period of time
trying to trigger as many changes or faults as possible.
To maximize the number of found changes we try to
avoid running the target application with workloads
with a poor chance to succeed.

In the situation, when the workload does not ex-
ceed the coverage threshold, it is not significant for
us, because instruction path length is not satisfactory,
hence we discard this workload. The threshold is mul-
tiple of base coverage, set to 1.5 by default, but it
can also be specified by the user. During the testing,
fuzzed workload can cause that target program termi-
nates with an error (e.g SIGSEGV, SIGBUS, SIGILL,
. . .) or it hangs (runs too long). Even though we are
not primarily focused on faults, they are interesting for
us too because an incorrect internal program state can
contain some degradation and in error handlers can
also be hidden degradation.

4.3.4 Performance changes detection
All the interested mutations are now collected and
ready for real testing revealing performance changes.
Testing is done similarly to initial profile-guided test-
ing (Section 4.2.2), but instead we test with fuzzed
interesting inputs. If performance degradation occurs,
we rate and assign the score to the workload using fit-
ness function and classify the result as the final result
causing performance degradation.

5. Experimental Evaluation
We tested our fuzzing machine on artificial examples
to measure its efficiency of generating worst-case mu-
tations. We mentioned in the introduction that time
consumption of inserting to unbalanced binary tree
(UBT) highly depends on the order of insertion. We
randomly generated 1 000 numbers in the range of
<0,1 000> and used them as an initial seed to a pro-
gram that create an UBT and then iteratively inserts
elements. We set the maximum size of generated mu-
tation to 8800 bytes to avoid large input files. In first
minute of fuzzing loop, we already reported 60 files
which reported performance degradation. Analysis
of worst-case mutations confirmed, that unbalanced
binary tree degenerates to a linked list when a sorted
list is inserted. Moreover, when a fuzzer maximizes
the size of mutation, which is only around 2.27 times
larger than the original seed, average time spent by the
target program grows rapidly.

We further tested standard library list std::list3,
which is usually implemented as a doubly-linked list,
and performed a search with std::find.4 The tested
program reads strings from a file, saves them to list
and subsequently performs a search for each of them.
Initial seed contains 10 000 random words, and using
a rule that sorts the words led to 14 times longer exe-
cution time of the program. For comparison, the same
mutation but with randomly shuffled words causes the
degradation as well, however, execution time was only
2.53 times worse than expected behavior and is proba-
bly caused by the necessity of parsing more words.
Table 1. Worst-case mutations as input to target
programs working with selected data structures, and
their impact on performance.

structure time degradation cov increase
UBT 9.28x 41.56x
std::list + std::find 14.01x 15.05x

Table 1 shows worst-case generated mutations,
their time and coverage characteristics in comparison

3std::list - https://en.cppreference.com/w/cpp/container/list
4std::find - https://en.cppreference.com/w/cpp/algorithm/find

https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/algorithm/find

with an initial seed. You can see that time-consumption
increased more than 9 times, respectively 14 times,
when the programs were provided with the worst-case
inputs and that it has been executed severalfold more
lines of code.

In our second experiment, we tested artificial pro-
grams which use std::regex search5, on the
several regular expressions inspired by ReDoS attacks6

(regular expression denial of service). First is the
simplified regular expression that caused outage of
StackOverflow in July, 2016. The regex tries to match
whitespaces at the end of a line, but is weak with pos-
sible backtracking. The other two regular expressions
have a similar problem, when carefully constructed
inputs can cause catastrophic backtracking and are
therefore considered to be vulnerability.7

Table 2. Worst-case generated inputs for specific
regular expressions with their impact on performance
in comparison with an initial seed.

regex time degradation coverage increase
\s+$ 5.79x 15.59x
ˆ(.*?,){10}P 2 897.23x 2 442.37x
** 940.44x 10 873.94x

** <html>.*?<head>.*?</head>.*?<body[ˆ>]*>.*?</body>

.*?</html>

Analysis of worst-case mutations showed, that in
the first case, long sequences of whitespaces not end-
ing with the end of line caused the regex engine to
backtrack repeatedly. The second regular expression
is built for CSV (Comma-separated values) files, and
tries to find lines where the 11th item on a line started
with a ’P’. At the point when the 11th field does not
start with a ’P’, the engine will backtrack as well. At
last, a simple regular expression matches a complete
HTML file, however, when a file was cut at the end
and does not contain valid ending html tags, the engine
takes too much time as well.

6. Conclusions
In this paper, we introduced a fuzzing machine gener-
ating malicious inputs focusing on performance weak-
nesses. We use specific methods to mutate the files,
dynamically analyze their efficiency, collect user cover-
age information and use the Perun tool [5] to measure
information of program run.

Our future work will focus mainly on effective
visualization of fuzzing results, to illustrate which par-
ticular inputs challenge the program, what changes
makes the program consume more resources, or how

5 https://en.cppreference.com/w/cpp/regex/regex search
6 https://en.wikipedia.org/wiki/ReDoS
7https://www.regular-expressions.info/catastrophic.html

many changes we can detect in time. Moreover, we
want to add new domain-specific mutation methods,
work on support for fuzzing with multiple file types,
and also improve parent rating and selection by deeper
analysis of program run. At last, we plan to evalu-
ate our solution on real-world projects and potentially
report new unique performance bugs.

Acknowledgements
I would like to thank for the support received from
Red Hat company, my supervisors and colleagues from
VeriFIT performance team — Tomáš Fiedor, Adam
Rogalewicz, Hana Pluháčková, Tomáš Vojnar, Šimon
Stupinský and Jiřı́ Pavela.

References
[1] Scott A. Crosby and Dan S. Wallach. Denial of

service via algorithmic complexity attacks. In Pro-
ceedings of the 12th Conference on USENIX Secu-
rity Symposium - Volume 12, SSYM’03, Berkeley,
CA, USA, 2003. USENIX Association.

[2] Michał Zalewski. American fuzzy lop. http:
//lcamtuf.coredump.cx/afl/.

[3] libfuzzer – a library for coverage-guided
fuzz testing. https://llvm.org/docs/
LibFuzzer.html.

[4] Caroline Lemieux, Rohan Padhye, Koushik Sen,
and Dawn Song. Perffuzz: Automatically gener-
ating pathological inputs. In Proceedings of the
27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, New
York, USA, 2018. ACM.

[5] Perun: Performance version system. https://
github.com/tfiedor/perun.

[6] Toby Clarke. Fuzzing for software vulnerability
discovery. Technical Report RHUL-MA-2009-
04, Department of Mathematics, Royal Holloway,
University of London, Egham, Surrey TW20 0EX,
England, February 2009.

[7] Emil Edholm and David Göransson. Escaping
the fuzz - evaluating fuzzing techniques and fool-
ing them with anti-fuzzing. Master’s thesis, De-
partment of Computer Science and Engineering,
Chalmers University of Technology, 2016.

[8] Pavela Jiřı́ and Šimon Stupinský. Towards the
detection of performance degradation. In Ex-
cel@FIT’18.

https://en.cppreference.com/w/cpp/regex/regex_search
https://en.wikipedia.org/wiki/ReDoS
https://www.regular-expressions.info/catastrophic.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/tfiedor/perun
https://github.com/tfiedor/perun

	Introduction
	Fuzzing
	Performance Oriented Fuzzing
	Fuzzer Engine Implementation
	Experimental Evaluation
	Conclusions
	References

