
9
http://excel.fit.vutbr.cz

Automation of MiTM attacks with use of
microservices architecture and singleboard
computers
Šimon Podlesný*

Abstract
This article is focused on design of MiTM attack with use of modern approaches in IT infrastructure.
Especially it’s focused on how to simplify configuration of single-board computer for penetration
testing purposes by creating scalable infrastructure for device configuration and control. It’s also
trying to solve problem of disjunction between physical and network security, where professionals
for physical security lack technical skills needed for network attacks and vice versa. Proposed
solution allows the usage of complicated attacks by trained staff while not limiting users with
experience in network security. While today, applications capable of MiTM attacks are monolithic
and device-centric, proposed solution considers the device providing MiTM just as one part of the
solution and also focuses on other problems like data exfiltration or hash cracking. This was made
possible mostly by using Docker, Ansible and Python.

Keywords: MiTM, Ansible, Docker, Raspberry Pi, eaphammer

Supplementary Material: Source Code for: Configurator , Hash storage server

*spodlesny@gmail.com, Faculty of Information Technology, Brno University of Technology

1. Introduction

Network security is a hot topic. During last few years,
companies and states spent large sums of money for de-
fensive and offensive measures in cyberspace. While
IDS/IPS systems and firewalls on gateways to the Inter-
net are becoming standards in corporate world, entry-
points like Wi-Fi have been mostly forgotten, relying
on old security standards that do not take into account
modern world and technologies (like credit card sized
computers). Since penetration testing is about finding
the weakest link, I decided to demonstrate how easy
it could be to use devices like Raspberry Pi for pen-
etration testing, while presenting a new approach to
penetration testing.

2. Current state

MiTM attacks have been here since the first wired and
wireless transmissions were made. As people were
finding new ways to eavesdrop communication, new
ways how to protect it were created. Today, and for
past few decades, MiTM attacks have been focused
mostly on Ethernet and Wi-Fi networks.

Most common approach to this type of attacks
is that attacker connects to network with a laptop and
performs a MiTM attack on the spot. Another common
approach is to install malware on a local computer and
use this device to do the attack.

While these approaches are relatively well-proven,
sufficiently long physical access to network is not al-

http://excel.fit.vutbr.cz
https://github.com/spodlesny/raspi_redteam
https://github.com/spodlesny/hash_server
mailto:spodlesny@gmail.com


ways possible and accessing a computer on local net-
work through the Internet is a difficult task, since most
LAN networks are behind NAT.

For the last few years, there is a new trend of using
single-board computers for this task. They are small,
relatively cheap and can be powered by battery or USB
port. The biggest problem of these single-board com-
puters is their real world use, since most applications
for penetration testing were not designed to be used
without user input in any way.

It’s also problematic to verify that configuration
works as it was intended due to missing display. An-
other problem is extraction of data from device if phys-
ical access is no longer possible. Last issue that should
be also taken into account is how to replicate the con-
figuration process for each new device, so the pentester
doesn’t have to start with vanilla image of operating
system every time a new device is needed. Overall,
configuration is a time-consuming, tedious process
that can be automated to a degree where connecting a
device to keyboard, monitor, and mouse is no longer
necessary.

Proposed solution attempts to take care of all of
these problems. It does not try to recreate wheel for
penetration testing, but it simply shows a better way
how to utilize existing tools, while taking into account
strengths and weaknesses of single-board computers.
One of the goals of this project is to make it more user
friendly, so people with other backgrounds (like physi-
cal security) can also use it. I believe that this would
be a welcomed change, and single-board computers
will be utilized in the field similarly as audio/video
devices are being used today.

3. Existing solutions
Existing solutions can be divided into following two
categories:

1. Open source software
2. Commercially available single-use devices (with

their own closed source software)

Notable examples from the category of open source
software are the following two tools: Bettercap and
WiFi-Pumpkin. Bettercap is a successor of Ettercap
and it allows network reconnaissance and MiTM at-
tacks on Ethernet and Wi-Fi networks. Bettercap can
be also monitored and controlled through a REST API,
which is limited for local network only due to a fact
that server must [1] run alongside app. WiFi-Pumpkin
is focused on wireless attacks only [2]. Configuration
is made through GUI which is limiting its use and
CLI is not yet available. The biggest advantage of

WiFi-Pumpkin is the possibility to create a transparent
proxy [3] that can be hooked on by a Python script
for tailored interception and modification of HTTP
communication.

From commercially available tools, the most known
device is WiFi Pineapple NANO from company Hak5.
Biggest advantage [4] of this device is that it’s single-
use, therefore no initial set up or configuration is re-
quired for using it. On the other hand, its use is limited
by fact that support for new attacks must be added by
the manufacturer.

4. Proposed solution and challenges

Proposed solution can be split into several categories,
based on the challenges which they are solving. The
first challenge is the configuration of the device. Dif-
ferent hardware requires different configurations (for
example due to a different interface names and re-
quired patches for Wi-Fi drivers). Writing bash scripts
is slow and tedious process and can be a problematic
for remote configuration and debugging. Bash scripts
were therefore replaced with Ansible roles, as they can
be easily read and have uniform interface (modules)
for basic configuration (installing packages, user and
group management, etc.).

This, however, creates a new problem: How to
choose which roles to run and how to make simple
changes in configuration easy. For example, in order
to change domain, we would have to search for the
corresponding variable in one of the many locations
where variables and global variables could be stored.
Same thing applies for roles, as it does not make sense
to set Wi-Fi interface into monitoring mode, if we are
doing ARP poisoning through Ethernet interface.

This problem was solved by creating a Django
application that works as a configurator and a simple
GUI editor. Roles can be uploaded though the Django
administration interface and simple changes can be
performed through regular expressions that are auto-
matically applied before an Ansible playbook is built.

The next challenge was making the applications
used in the attack stable. Development of these tools is
quite active and in most cases without backwards com-
patibility. Same thing applies for their dependencies,
which can change drastically from day to day. The so-
lution was dockerization, where an image containing
just the selected application and required dependencies
is created. This image is then pushed to Docker Hub
and the application is frozen in its current state for
further use.

The last challenge, which is often overlooked is
what to do with intercepted data. A common approach



Docker container

Deploy & run

Raspberry Pi 3 B+

get_hash.py

Docker container

App

eaphammer

Docker container

Storage server

Hash cracking rig

Docker container

hashcat_wrapper.py

hashcat64.binHTTP

H
TT

P

REST API

R
ES

T 
AP

I

Ansible stdout

Ansible

Ansible

Figure 1. Project infrastructure for IEEE 802.1x protocol attack

is to store the data locally on the device, however, it
would be better to have data available instantly and
be able to work with them. In this proposed solution
a REST API is used for communication with control
server, where the data will be stored and available for
attacker. The storage server is once again a Docker
container which can be started in matter of minutes.
Attacker can access this server and create a task for
cracking password/handshake on a second, remote ma-
chine.

5. Use case: Attacking the IEEE 802.1x
protocol

As a demonstration, I decided to perform attack on
the IEEE 802.1x protocol, used for example by Wi-Fi
networks participating in the eduroam initiative. In
this use case, I will use internal Wi-Fi interface for
Internet connection and external Wi-Fi interface with
bigger gain to do an Evil Twin attack, as it’s visualized
in Figure 2. Attack will be run though the application
eaphammer, which is specialized for attacks on this
protocol.

Eaphammer requires that process wpa2 supplicant
does not run on the selected interface. The workflow
was following:

1. A Docker image (based on vanilla Kali Linux)

Internet

Mobile hotspot
providing internet

connection

Real wifi

Evil twin of real wifi

Attacker

Figure 2. Device will always prefer BSSID with
better signal.

with eaphammer was created and pushed to Docker
Hub.

2. A simple Python script was created, which will
run the Docker container with eaphammer com-
mand line arguments, and analyze output on
stdout. In the case that handshake was captured,
the script will send it through the REST API to
storage server. If Internet connection is not avail-
able, the result is stored locally. Script is quite



Figure 3. A graphical configurator can be used to
choose which tasks should be performed

short, with only 42 lines (see get hash.py
for details).

3. An Ansible role was created that will copy the
script (get hash.py) into device, install re-
quirements (python, docker) and pull the image
from Docker Hub into device. The role also con-
tains instructions for disabling wpa supplicant
on selected interface by modifying the config-
uration file of the interface, and how to set the
other interface to connect to predefined hotspot.
Whole Ansible role is shorter then 30 lines of
code (see role: wpa2 enterprise attack),
making it significantly shorter than similar code
written in Bash. It also can be easily read (as
shown in Listing 1) and be understood even
without previous knowledge of Ansible (which
couldn’t be said about Bash scripts).

Communication and relationship between services
and devices is shown in Figure 1

This new role is then uploaded to configurator and
ready for use. The only required action from the end
user is to choose which roles should be run (see Fig-
ure 3). Device will be restarted when configuration
is finished, and if no error occurred, a green LED on
device will light up. In case the Docker container fails
to start or a captured hash cannot be send to the remote
server, the green LED will be turned off.

For sending data, internal Wi-Fi device is used
(due to it’s lower gain) and will connect to attackers
hotspot, giving the device access to the Internet. It’s
also possible to connect to the Internet via USB tether-
ing, in which case no further action is required. This
allows creation of RogueAP for monitoring and mod-
ifying Internet traffic in a similar way as Darkhotel
APT [5] used to do.

The attack and architecture were tested by faking
the eduroam network SSID and the outcome was really
interesting. Mobile devices with Android OS will, au-

tomatically on background, try to connect to this fake
Access Point even when certificate validation failed,
making this attack almost invisible for victim. A rather
unexpected finding was that Comenius University in
Bratislava apparently uses only 6 character long pass-
words, making it possible to brute force it in a matter of
minutes. During 3 hour train ride, I was able to capture
49 different credentials for eduroam network and crack
almost 20% of credentials using hashcat. It would be
good to point out that this test did not break Slovak
laws in any way. Especially §247 law n.o. 300/2005
Z. z. doesn’t apply here due to a fact that intercepted
data weren’t misused in any way, and were used only
for a verification of technological concept.

- name: Disable wpa2_suplicant for wlan1
blockinfile:

path: /etc/dhcpcd.conf
insertafter: EOF
block: |
interface wlan1

nohook wpa_supplicant

Listing 1. Ansible role for inserting block of text into
file.

6. Conclusions
The goal of this project is to demonstrate benefits of
microservices architecture for penetration testing pur-
poses, compared to device centric approach widely
used today. The main benefits of this solution are quick
deployment, and simple change of command/storage
server. Usage of REST API and making the single-
board computer only a part of a larger infrastructure
allows better availability in case when Internet is not
available 24/7. Two interfaces allow simple access to
the Internet, while not limiting the range of possible
attacks. Simple web interface for deployment, running
and configuration of Ansible roles makes this solution
exceptionally easy for use. However, this approach
doesn’t limit user in any way compared to device cen-
tric approach and brings many benefits like scalability
and stability, while also automating processes like hash
cracking, deployment, and configuration.

Acknowledgements

I would like to thank my supervisor Ing. Jan Pluskal for
helping me with this work. His knowledge of network
attacks was valuable source of information during the
design and development phases of this work. Last but
not least, I would like to thank Bc. Adrián Király for
corrections and help with LATEX.



References
[1] All hail bettercap 2.0, one tool to rule them all.,

02 2018. https://www.evilsocket.net/
2018/02/27/All-hail-bettercap-2-
0-one-tool-to-rule-them-all/.

[2] Wifi-pumpkin-ng (python 3), 2018.
https://github.com/P0cL4bs/WiFi-
Pumpkin/projects/3.

[3] Wifi-pumpkin - transparent proxy, 2018.
https://github.com/P0cL4bs/WiFi-
Pumpkin#transparent-proxy.

[4] Wifi pineapple website, 2018. https://
www.wifipineapple.com/.

[5] Kaspersky Lab. The darkhotel apt. a
story of unusual hospitality. Online
research paper, Nov 2014. https:
//media.kasperskycontenthub.com/
wp-content/uploads/sites/43/2018/
03/08070903/darkhotel kl 07.11.pdf.

https://www.evilsocket.net/2018/02/27/All-hail-bettercap-2-0-one-tool-to-rule-them-all/
https://www.evilsocket.net/2018/02/27/All-hail-bettercap-2-0-one-tool-to-rule-them-all/
https://www.evilsocket.net/2018/02/27/All-hail-bettercap-2-0-one-tool-to-rule-them-all/
https://github.com/P0cL4bs/WiFi-Pumpkin/projects/3
https://github.com/P0cL4bs/WiFi-Pumpkin/projects/3
https://github.com/P0cL4bs/WiFi-Pumpkin#transparent-proxy
https://github.com/P0cL4bs/WiFi-Pumpkin#transparent-proxy
https://www.wifipineapple.com/
https://www.wifipineapple.com/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08070903/darkhotel_kl_07.11.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08070903/darkhotel_kl_07.11.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08070903/darkhotel_kl_07.11.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08070903/darkhotel_kl_07.11.pdf

	Introduction
	Current state
	Existing solutions
	Proposed solution and challenges
	Use case: Attacking the IEEE 802.1x protocol
	Conclusions
	References

