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Abstract
Static analysis has nowadays become one of the most popular ways of catching bugs early in the
modern software. However, reasonably precise static analyses do still often have problems with
scaling to larger codebases. And efficient static analysers, such as Coverity or Code Sonar, are
often proprietary and difficult to openly evaluate or extend. Facebook Infer offers a static analysis
framework that is open source, extendable, and promoting efficient modular and incremental
analysis. In this work, we propose three inter-procedural analysers extending the capabilities of
Facebook Infer: Looper (a resource bounds analyser), L2D2 (a low-level deadlock detector), and
Atomer (an atomicity violation analyser). We evaluated our analysers on both smaller hand-crafted
examples as well as publicly available benchmarks derived from real-life low-level programs and
obtained encouraging results. In particular, L2D2 attained 100 % detection rate and 11 % false
positive rate on an extensive benchmark of hundreds of functions and millions of lines of code.
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1. Introduction

Bugs are an inherent part of software ever since the
inception of the programming discipline. They tend
to hide in unexpected places, and when they are trig-
gered, they can cause significant damage. In order
to catch bugs early in the development process, ex-
tensive automated testing and dynamic analysis tools
such as profilers are often used. But while these solu-
tions are sufficient in many cases, they can sometimes
still miss too many errors. An alternative solution is
a static analysis, which has its own shortcomings as
well. Like, for example, a high rate of false positives
and, in particular, quite a big problem with scalability.

Recently, Facebook has proposed its own solu-
tion for efficient bug finding and program verification
called Facebook Infer — a highly scalable composi-
tional and incremental framework for creating inter-
procedural analyses. Facebook Infer is still under
development, but it is in everyday use in Facebook
(and several other companies, such as Spotify, Uber,
Mozilla, and others) and it already provides many
checkers for various kinds of bugs, e.g., for verification

of buffer overflow, thread safety, or resource leakage.
However, equally importantly, it provides a suitable
framework for creating new analyses quickly.

However, the current version of Infer still misses
better support, e.g., for concurrency or performance-
based bugs. While it provides a fairly advanced data
race and deadlock analysers, they are limited to Java
programs only and fail for C programs, which require
more thorough manipulation with locks. Moreover, the
only performance-based analyser aims to worst-case
execution time analysis only, which does not provide
a wise understanding of the programs performance.

In particular, we propose to extend Facebook In-
fer with three analysers: Looper, a resource bounds
analyser; L2D2, a lightweight deadlock checker; and
Atomer, an atomicity violation checker working on
the level of sequence of function calls. In experimen-
tal evaluation, we show encouraging results, when
even our immature implementation could detect con-
currency property violations and infer precise bounds
for selected benchmarks, including rather large bench-
marks based on real-life code. The development of
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these checkers has been discussed several times with
the developers of Facebook Infer, and it is an integral
part of the H2020 ECSEL project Aquas.

2. Facebook Infer
Facebook Infer is an open-source static analysis frame-
work, implemented in OCaml, which is able to dis-
cover various types of bugs of the given program,
in a scalable manner. It is a general abstract inter-
pretation [1] framework focused primarily on finding
bugs rather than formal verification that can be used
to quickly develop new kinds of compositional and
incremental analyses based on the notion of function
summaries. In theory, a summary is a representation
of function’s preconditions and postconditions or ef-
fects. In practice, it is a custom data structure that
allows users to store arbitrary information resulting
from function’s analysis. Infer does (usually) not com-
pute the summaries during a run of the analysis along
the Control Flow Graph (CFG) as is done in classical
analysers based on the ideas from [2] and [3]. Instead,
it analyses a program function-by-function along the
call tree, starting from its leafs. Hence, a summary of
a function is typically analysed without knowing its
call context. The summary of the function is then used
at all of its call sites. Furthermore, thanks to its incre-
mentality, Infer can analyse individual code changes
instead of the whole project, which is more suitable
for large and quickly changing codebases where the
conventional batch analysis is unfeasible. Intuitively,
the incrementality is based on re-using summaries of
functions for which there is no change in them nor in
the functions (transitively) called from them.

Infer uses a scheduler which determines the order
of analysis of individual functions based on a call
graph. It also checks if it is possible to analyse some
functions concurrently, which allows Infer to run in
a heavily parallelized manner. In more detail, a call

Figure 1. A call graph

graph is a directed graph
describing call depen-
dencies between func-
tions. An example of
a call graph is shown in
Figure 1. Using this fig-
ure, we can illustrate the
order of analysis in In-
fer and its incrementality.
The underlying analyser
starts with the leaf func-
tions P5 and P6 and then
proceeds towards the root PMAIN while respecting the
dependencies represented by the edges. Each subse-

quent code change then triggers a re-analysis of the
directly affected functions only as well as a re-analysis
of all the functions up the call chain. For example, if
we modify the function P3, Infer will re-analyse only
P3, P1, and PMAIN.

Infer supports analysis of programs written in mul-
tiple languages including C, C++, Objective-C, and
Java and provides a wide range of analyses, each focus-
ing on different types of bugs, such as Inferbo (buffer
overruns), RacerD [4] (data races), or Starvation (con-
currency starvation and selected types of deadlocks).

3. Worst-Case Cost Analyser

Recently, performance issues have become consider-
ably more widespread in code, leading to a poor user
experience. Facebook Infer currently provides the cost
checker [5] only, which implements a worst-case exe-
cution time analysis (WCET). However, this analysis
provides a numerical bound on the time required for
the execution of a program only, which can be hard
to interpret, and, above all, it is quite imprecise for
more complex algorithms, e.g., requiring amortized
reasoning. Loopus [6] is a powerful resource bounds
analyser, which, to the best of our knowledge, is the
only one that can handle amortized complexity anal-
ysis for a broad range of programs. However, it is
limited to intra-procedural analysis only, and the tool
itself without an incremental framework is not suitable
for large and quickly changing codebases. Hence, we
implemented Looper – analyser that recasts the pow-
erful analysis of Loopus within Infer which enables
the possibility for a more efficient resource bounds
analysis.

Bounds inferred by Loopus refer to the number
of possible back jumps to loop headers, which is an
useful metric related to asymptotic time complexity as
it corresponds to the possible number of executions of
instructions inside a loop. The main algorithm relies
on an abstract program model called a difference con-
straint program (DCP), an example of which can be
seen in Figure 2b.

Listing 1. A snippet requiring amortized complexity
analysis. The DCP abstraction is shown in Figure 2b.
‘*’ denotes non-determinism. Total cost: 3n
void foo(int n):

int i = n, j = 0, z = 0;
l1 : while (i > 0):

i--; j++;
l2 : while (j > 0 && *) j--; z++;

int x = z;
l3 : while (x > 0) x--;

Each transition τ of a DCP has a local bound τv,



Call Evaluation and Simplification

TB(τ5)

→ Incr([x])+
TB(τ4)×max(VB([z])+0,0)
→ 0+1×max([n]+0,0) = [n]

VB([z]) → Incr([z])+max(VB(0)+0) = [n]
Incr([z]) → TB(τ2)×1 = [n]

TB(τ2)
→ Incr([ j])+TB(τ0)×0
→ [n]+1×0 = [n]

Incr([ j]) → TB(τ1)×1 = [n]

TB(τ1)
→ Incr([i])+TB(τ0)×max([n]+0,0)
→ 0+1× [n] = [n]

(a) A simplified computation of the bound for τ5. Incr([x])
and Incr([i]) are 0 as there are no transitions that increase
the value of [x] or [i]. TB(τ0) and TB(τ4) are 1 as they are
not part of any loop.

lb

l1l2

l3 le

τ0

[i]′ ≤ [n]
[ j]′ ≤ [0]
[z]′ ≤ [0]

τ1

[i]′ ≤ [i]−1
[ j]′ ≤ [ j]+1
[z]′ ≤ [z]

τ3

[i]′ ≤ [i]
[ j]′ ≤ [ j]
[z]′ ≤ [z]

τ5[x]′ ≤ [x]−1

τ4

[x]′ ≤ [z]

[i]′ ≤ [i]
[ j]′ ≤ [ j]−1
[z]′ ≤ [z]+1

τ2

(b) An abstraction obtained from Listing 1. Each transition is
denoted by a set of invariant inequalities.

Figure 2

i.e., a variable v that locally limits the number of execu-
tions of the transition τ . For example, the variable j in
Figure 2b limits the number of consecutive executions
of the transition τ2.

The bound algorithm is based on the idea of rea-
soning about how often and by how much might the
local bound of a transition τ increase, which affects
the number of executions of τ . The computation inter-
leaves calls to two procedures:

1. VB – computes a variable bound expression in
terms of program parameters which bounds the
value of the variable v.

2. TB – computes a bound on the number of times
that a transition τ can be executed. Transitions
that are not part of any loop have the transition
bound 1.

The TB procedure is defined in the following way:

TB(τ) = Incr(τv)+Resets(τv)

The Incr(τv) procedure represents how often and by
how much might the local bound τv increase:

Incr(τv) = ∑
(t,c)∈I(τv)

TB(t)×c

I(τv) is the set of transitions t that increase the value
of τv by c. Resets(τv) represent the possible resets of
the local bound τv to some arbitrary values which also
add to the total amount by which τv and consequently
TB(τ) might increase:

Resets(τv)= ∑
(t,a,c)∈R(τv)

TB(t)×max(VB(a)+c,0)

Above, R(τv) is the set of transitions t that reset the
value of the local bound τv to a+c where a is a vari-
able.

The remaining VB(v) procedure is defined as:

VB(v) = Incr(v)+ max
(t,a,c)∈R(v)

(VB(a)+c)

It picks the maximal value of all possible resets of
v as the initial value and increases it by the value of
Incr(v). Note that the procedure returns v itself if it
is a program parameter or a numeric constant.

The complete bound algorithm is then the mutual
recursion of the procedures TB and VB. The main rea-
son why Loopus scales so well with this approach is
local reasoning: it does not rely on any global program
analysis and is able to obtain complex invariants such
as x≤max(m1,m2)+2n. These invariants are not ex-
pressible in common abstract domains such as octagon
or polyhedra, which would lead to a less precise result.
This approach is also demand-driven (Figure 2a), i.e.
it only performs necessary recursive calls and does not
compute all possible invariants. For a full flow and
path sensitive algorithm and its extension refer to [6].

Figure 2a presents an example computation of the
transition bound of τ5 from the DCP in Figure 2b,
which corresponds to Listing 1. This code demon-
strates the need for amortized complexity analysis as
the worst-case cost of the l2 loop can indeed be n.
However, its amortized cost is 1 as the total number
of iterations of l2 (total cost) is also equal to n due to
the local bound j, which is bounded by n. Loopus is
able to obtain the bound of n instead of n2 for the inner
loop l2 unlike many other tools. Another challenge
is the computation of the bound for the loop l3. It is
easy to infer z as the bound, but the real challenge lies
in expressing the bound in terms of program parame-
ters. Thus, the real task is to obtain an invariant of the
form z≤ expr(n) where expr(n) denotes an expres-



Table 1. An experimental evaluation of Looper.
Benchmarks are publicly available1.

Bound
Inferred bound Time [s]
Looper Cost Looper Cost

#1 n 2n n2 0.3 0.4
#2 2n 2n 5n 0.5 0.4
#3 4n 5n ∞ 0.8 1.4
#4 *n2 n2 ∞ 0.6 0.9
#5 2n 2n 12n 0.3 0.5
#6 *n n ∞ 0.6 0.7
#7 2n 2n ∞ 0.4 1
#8 2n 2n ∞ 0.7 1.8

sion over program parameters, n in this case. Loopus
is able to obtain the invariant z ≤ n simply with the
VB procedure and to infer the bound n for the loop l3.

The implementation of TB and VB is quite straight-
forward in a functional paradigm (OCaml). We first
convert the native CFG used by Infer into a DCP used
by Loopus’ abstraction. In particular, we leverage the
AI framework and symbolically execute the program
yielding a transition system. Further, we had to im-
plement the abstraction algorithm and an algorithm
which computes local bounds. We further extended
the basic algorithm with several extensions which im-
prove its precision such as a reasoning based on so
called reset chains or an algorithm that converts the
standard DCP into a flow-sensitive one by variable
renaming. For more details about these extensions,
refer to [6]. The current implementation is still lim-
ited to intra-procedural analysis as the original Loopus.
However, we already have a conceptual idea based on
substitution of the formal parameters in a symbolic
bound expression stored in a summary with the vari-
able bounds of arguments at a callsite resulting in, al-
beit less precise, but scalable solution. We should also
be able to obtain the symbolic return value through the
VB procedure and then use it at a call site in a similar
way. We are aware that this reasoning is limited to
functions without pointer manipulation but it should
be a step in the right direction.

Table 1 presents experimental results of our current
implementation on selected examples from the disser-
tation [6]. We compared the results of Looper (Loopus
in Infer) with the Cost analyser mentioned in the intro-
duction of this section. For Cost we have simplified
the reported bounds to the worst-case asymptotic com-
plexity instead of the cost.

1https://bit.ly/2uORslv

4. Deadlock Analyser

According to [7], deadlock is perhaps the most com-
mon concurrency error that might occur in almost
all parallel programming paradigms including both
shared-memory and distributed memory. Detecting
deadlocks during testing is very hard due to many pos-
sible interleavings among threads. Of course, one can
use extrapolating dynamic analysers and/or techniques
such as noise injection or systematic testing [8] to
increase chances of finding deadlocks, but such tech-
niques decrease the scalability of the testing process
and can still have problems discovering some errors.
That is the reason why many static detectors were cre-
ated, but most of them are quite heavy-weight and
do not scale well. However, there are few that meet
the scalability condition, like the starvation analyser
implemented in Facebook Infer. But, the problem of
this analyser is that it uses a heuristic based on using
the class of the root of the access path2 of a lock, and
so it does not handle pure C locks. Another, that is
worth mentioning, is the RacerX analyser [9], which is
based on counting so-called locksets, i.e., sets of locks
currently held. RacerX uses interprocedural, flow-
sensitive, and context-sensitive analysis. This means
that each function needs to be reanalysed in a new
context, which reduces the scalability. Hence, we have
decided to develop a new context-insensitive analysis
(only very loosely inspired by RacerX), which will be
faster and more scalable. We have implemented this
analysis in our Low-Level Deadlock Detector (L2D2),
the principle of which will be illustrated by the exam-
ple in Listing 2 (a full description of the algorithm
with all its optimisations is beyond the scope of this
paper).

L2D2 works in two phases. In the first phase, it
computes a summary for each function by looking for
lock and unlock events present in the function. An
example of a lock and an unlock event is illustrated
in Listing 2 at lines 22 and 27. If a call of a user-
defined function appears in the analysed code during
the analysis, like at line 26 of our example, the analyser
is provided with a summary of the function if available.
Otherwise, the function is analysed on demand (which
effectively leads to analysing the code along the call
tree, starting at its leaves, as usual in Facebook Infer).
The summary is then applied to an abstract state at
the call site. Hence, in our example, the summary of
foo will be applied to the abstract state of thread1.
More details on what the summaries look like and how
they are computed will be given in Section 4.1.

2Infer uses access paths for naming heap locations via the paths
used to access them, e.g., x.f.g (x is the root).

https://bit.ly/2uORslv


Listing 2. A simple example capturing a deadlock
between two global locks in the C language using the
POSIX threads execution model
16 void foo() {
17 pthread_mutex_lock(&lock2);
21 void *thread1(. . .) {
22 pthread_mutex_lock(&lock1);

...
26 foo();
27 pthread_mutex_unlock(&lock1);
29 void *thread2(. . .) {
30 pthread_mutex_lock(&lock2);

...
36 pthread_mutex_lock(&lock1);

In the second phase, L2D2 looks through all the
computed summaries of the analysed program and con-
centrates on so-called dependencies that are part of the
summaries. The dependencies record that some lock
got locked at a moment when another lock was still
locked. L2D2 interprets the obtained set of dependen-
cies as a relation, computes its transitive closure, and
reports a deadlock if some lock depends on itself in
the transitive closure.

If we run L2D2 on our example, it will report
a possible deadlock due to the cyclic dependency be-
tween lock1 and lock2 that arises if thread 1 holds
lock1 and waits on lock2 and thread 2 holds lock2
and waits on lock1. This is caused by dependencies
lock1→lock2 and lock2→lock1 in the sum-
maries of thread1 and thread2 (see Listing 3).

4.1 Computing Function Summaries
We now describe the structure of the summaries used
and the process of computing them. To detect potential
deadlocks, we need to record information that will
allow us to answer the following questions:

(1) What is the state of the locks used in the anal-
ysed program at a given point in the code?

(2) Could a cyclic dependency on pending lock re-
quests occur?

To answer question (1), we compute sets lockset

Listing 3. Summaries of the functions in Listing 2
foo()

PRECONDITION: { unlocked={lock2} }
POSTCONDITION: { lockset={lock2} }

thread1(...)
PRECONDITION: { unlocked={lock1, lock2} }
POSTCONDITION: { lockset={lock2},
dependencies={lock1->lock2} }

thread2(...)
PRECONDITION: { unlocked={lock1, lock2} }
POSTCONDITION: { lockset={lock1, lock2},
dependencies={lock2->lock1} }

Listing 4. Rules for summary computation
lockset:
lock(l) → lockset := lockset ∪ {l}
unlock(l) → lockset := lockset - {l}

unlockset:
lock(l) → unlockset := unlockset - {l}
unlock(l) → unlockset := unlockset ∪ {l}

locked:
if(lock(l) is the first operation in f)

unlocked f := unlocked f ∪ {l}
unlocked:
if(unlock(l) is the first operation in f)

locked f := locked f ∪ {l}

and unlockset, which contain the currently locked and
the currently unlocked locks, respectively. These sets
are a part of the postconditions of functions and record
what locks are locked/unlocked upon returning from
a function, respectively. Further, we also compute
sets locked and unlocked that serve as a precondition
for a given function and contain locks that should be
locked/unlocked before calling this function. When
analysing a function, the sets are manipulated as shown
in Figure 4.

Each summary contains also a set of dependencies
using which we can answer question (2). Extraction of
the dependencies is called upon every lock acquisition
and iterates over every lock in the current lockset, emit-
ting the ordering constraint produced by the current
acquisition. For example, if lock2 is in the current
lockset and lock1 has just been acquired, the depen-
dency lock2→lock1 will be emitted, as we can see
in Listing 2 in the function thread2.

The above described basic computation of the de-
pendencies would, however, be very imprecise and
lead to many false alarms. The imprecision is caused
by invalid locksets. The main reasons for imprecision
of the locksets are imprecision in dealing with condi-
tionals (all outcomes are considered as possible), with
function calls (missing context), and with lock aliasing
(any aliasing is considered to be possible).

Next, as we mentioned in the beginning of this
section, if a function call appears in the analysed code,
we have to apply a summary of the function to the
abstract state at the call site. Given a callee g, its
lockset Lg, unlockset Ug, and a caller f , its lockset L f ,
unlockset U f , and dependencies D f , we:

(1) Update the summary of g by replacing formal
parameters with actual ones in case that locks were
passed to g as parameters. In the example below, you
can notice that lock4 will be replaced by lock2 in
the summary of g.
(2) Update the precondition of f :
if(∃l : l ∈ unlockedg∧ l /∈ unlockset f )



add lock l to unlocked f

if(∃l : l ∈ lockedg∧ l /∈ lockset f )
add lock l to locked f

(3) Update D f by adding new dependencies for all
locks in L f with locks which were locked in g.

However, a problem occurs if some of the locks
which were acquired in g were also released there.
This is illustrated in the example below.

void f():
pthread_mutex_lock(&lock2);
g(&lock2);

void g(pthread_mutex_t *lock4):
pthread_mutex_lock(&lock3);
pthread_mutex_unlock(lock4);
pthread_mutex_lock(&lock1);

...
pthread_mutex_unlock(&lock1);
pthread_mutex_unlock(&lock3);

In that case, Lg will not contain these locks, and we
have no information about them. To cope with prob-
lem, we have yet another set in the summaries whose
semantics is similar to the semantics of the lockset ex-
cept that the unlock statement does not remove locks
from it. In our example, this set would contain lock3
and lock1. Moreover, there is still one problem
left. What if the lock from the current lockset was
unlocked in the callee before we locked another lock
there? Then we would emit the wrong dependency
lock2→lock1. In order to avoid this problem, we
create unlock→lock type dependencies in the sum-
maries, that can be used to safely determine the order
of operations in the callee. This finally ensures that the
only newly created correct dependency in our example
will be lock2→lock3.
(4) Update L f : L f = (L f \Ug)∪Lg

(5) Update U f : U f = (U f \Lg)∪Ug

4.2 Experimental Evaluation
We performed experiments using a benchmark of 1002
concurrent C programs derived from the Debian GNU
Linux distribution.The entire benchmark is available
online at GitLab3. These programs were originally
used for an experimental evaluation of Daniel Kroen-
ing’s static deadlock analyser [10] implemented in the
CPROVER framework.

This benchmark set consists of 11.4 MLOC. Of
all the programs, 994 are deadlock-free and 8 of them
contain a deadlock. Our experiments were run on
a CORE i7-7700HQ processor at 2.80 GHz running
Ubuntu 18.04 with 64-bit binaries. The CPROVER ex-
periments were run on a Xeon X5667 at 3 GHz running
Fedora 20 with 64-bit binaries. In case of CPROVER,

3https://bit.ly/2WJBQLQ

Table 2. Results for programs without a deadlock
(t/o — timed out, m/o — out of memory)

proved alarms t/o m/o errors
CPROVER 292 114 453 135 0
L2D2 810 104 0 0 80

the memory and the CPU time were restricted to 24 GB
and 1800 seconds per benchmark, respectively.

Both our analyser and CPROVER correctly re-
port all 8 potential deadlocks in the benchmarks with
known issues. A comparison of results for deadlock-
free programs can be seen in Table 2.

As one can see, L2D2 reported false alarms for
104 deadlock-free benchmarks which is by 10 less
than CPROVER. A much larger difference can be seen
in cases where it was proved that there was no dead-
lock. The difference here is 518 examples in favor
of our analyser. In case of L2D2, we have 80 com-
pilation errors that were caused by syntax that Infer
does not support. The biggest difference between our
analyser and CPROVER is the runtime. While our
analyser needed approximately 2 hours to perform the
experiments, CPROVER needed about 300 hours.

There is still space for improving our analysis
by reducing the number of alarms, which are mainly
caused by false dependencies as mentioned in Sub-
section 4.1 (4th paragraph). Hence, to eliminate false
positives, we need some techniques to eliminate false
dependencies. In our implementation of L2D2, we use
a number of heuristics that try to reduce the impreci-
sion. An example is that if a locking error occurs (dou-
ble lock acquisition), then L2D2 sets the current lock-
set to empty, and adds the currently acquired lock to
the lockset (we can safely tell that this lock is locked),
thereby eliminating any dependencies that could result
from the locking error. More precise description of
these heuristics is beyond the scope of the paper.

5. Atomicity Violations Analyser

In concurrent programs there are often atomicity re-
quirements for execution of specific sequences of in-
structions. Violating these requirements may cause
many kinds of problems, such as an unexpected be-
haviour, exceptions, segmentation faults, or other fail-
ures. Atomicity violations are usually not verified by
compilers, unlike syntactic or some sorts of seman-
tic rules. Atomicity requirements, in most cases, are
not even documented. It means that typically only
programmers must take care of following these re-
quirements. In general, it is very difficult to avoid
errors in atomicity-dependent programs, especially in
large projects, and even harder and time-consuming is
finding and fixing these errors.

https://bit.ly/2WJBQLQ


Listing 5. An example of a contract violation
void replace(int *array, int a, int b):

int i = index_of(array, a);
if (i >= 0) set(array, i, b);

In this section we propose an implementation of
a static analyser for finding atomicity violations. In
particular, we concentrate on an atomic execution of
sequences of function calls, which is often required,
e.g., when using certain library calls.

5.1 Contracts for Concurrency
The proposal of a solution is based on the concept of
contracts for concurrency described in [11]. These
contracts allow one to define sequences of functions
that are required to be executed atomically. The pro-
posed analyser itself (Atomer) is able to automatically
derive candidates for such contracts, and then to verify
whether the contracts are fulfilled.

In [11], a basic contract is formally defined as
follows. Let ΣM be a set of all function names of
a software module. A contract is the set R of clauses
where each clause % ∈ R is a regular expression over
ΣM. A contract violation occurs if any of the sequences
represented by the contract clauses is interleaved with
an execution of functions from ΣM.

Consider an implementation of a function that re-
places item a in an array by item b, illustrated in List-
ing 5. The contract for this specific scenario contains
clause %1, which is defined as follows:

(%1) index of set

Clause %1 specifies that every execution of index of
followed by an execution of set should be atomic.
The index of an item in an array is acquired, and then
the index is used to modify the array. Without atomic-
ity, a concurrent modification of the array may change
a position of the item. The acquired index may then
be invalid when set is executed.

In [11] there is described a proposal and an imple-
mentation of a static validation for finding atomicity
violations, which is based on grammars and parsing
trees. The authors of [11] implemented the stand-alone
prototype tool4 for analysing programs written in Java,
which led to some promising experimental results but
the scalability of the tool was still limited. Moreover,
the tool from [11] is no more developed. That is why
we decided to get inspired by [11] and reimplement
the analysis in Facebook Infer redesigning it in ac-
cordance with the principles of Infer, which should
make it more scalable. In the end, due to adapting
the analysis for the context of Infer, our implementa-

4https://github.com/trxsys/gluon

tion is significantly different from [11] as presented
in Sections 5.2 and 5.3. Furthermore, unlike [11], the
implementation aims at programs written in C/C++
languages using POSIX Threads (Pthreads) locks for
synchronisation of concurrent threads.

In Facebook Infer there is already implemented
an analysis called Lock Consistency Violation, which
is part of RacerD [4]. The analysis finds atomicity
violations for writes/reads on single variables that are
required to be executed atomically. Atomer is dif-
ferent, it finds atomicity violations for sequences of
functions that are required to be executed atomically,
i.e., it checks whether contracts for concurrency hold.

The proposed solution is divided into two parts
(phases of the analysis):

Phase 1 Detection of atomic sequences, which is de-
scribed in Section 5.2.

Phase 2 Detection of atomicity violations, which is
described in Section 5.3.

5.2 Detection of Atomic Sequences
Before the detection of atomicity violations may be-
gin, it is required to have contracts introduced in Sec-
tion 5.1. Phase 1 of Atomer is able to produce such
contracts, i.e., it detects sequences of functions that
should be executed atomically. Intuitively, the detec-
tion is based on looking for sequences of functions that
are executed atomically on some path through a pro-
gram. The assumption is that if it is once needed to
execute a sequence atomically, it should probably be
always executed atomically.

The detection of sequences of calls to be executed
atomically is based on analysing all paths through the
CFG of a function and generating all pairs (A, B) of
sets of function calls such that: A is a reduced se-
quence of function calls that appear between the be-
ginning of the function being analysed and the first
lock or between an unlock and a subsequent lock (or
the end of the function being analysed), and B is a re-
duced sequence of function calls that follow the calls
from A and that appear between a lock and an unlock
(or the end of the function being analysed). Here, by
a reduced sequence we mean a sequence in which the
first appearance of each function is recorded only. The
reason is to ensure finiteness of the sequences and of
the analysis. The summary then consists of (i) the set
of all the B sequences and (ii) the set of concatenations
of all the A and B sequences with removal of duplicate
function calls. The latter is recorded for the purpose of
analysing functions higher in the call hierarchy since
locks/unlocks can appear in such a higher-level func-
tion.

https://github.com/trxsys/gluon
https://fbinfer.com/docs/checkers-bug-types.html#LOCK_CONSISTENCY_VIOLATION


Listing 6. An example of a code for an illustration of
the derivation of sequences of functions called
atomically
void g(void):

f1(); f1();
pthread mutex lock(&lock);
f1(); f1(); f2();
pthread mutex unlock(&lock);
f1(); f1();
pthread mutex lock(&lock);
f1(); f3();
pthread mutex unlock(&lock);
f1();
pthread mutex lock(&lock);
f1(); f3(); f3();
pthread mutex unlock(&lock);

For instance, analysis of the function g from List-
ing 6 (assuming Pthreads locks and existence of the
initialized global variable lock of the type pthr-
ead mutex t) produces the following sequences:

A1︷ ︸︸ ︷
f1 f1

B1︷ ︸︸ ︷
(f1 f1 f2) |

A2︷ ︸︸ ︷
f1 f1

B2︷ ︸︸ ︷
(f1 f3) |

A3︷︸︸︷
f1

B3︷ ︸︸ ︷
(f1 f3 f3)

The parentheses are used to indicate an atomic se-
quence. The strikethrough of the functions f1 and f3
denotes a removal of already recorded function calls in
the A and B sequences. The strikethrough of the entire
sequence f1 (f1 f3 f3) means discarding sequences
already seen before. The derivated sets for the function
g are then as follows: (i) {(f1 f2), (f1 f3)}, i.e., B1
and B2, (ii) {f1 f2 f3}, i.e., concatenation of A1, B1,
A2, and B2 with removal of duplicate function calls.

Further, we show how the function h from List-
ing 7 would be analysed using the result of the anal-
ysis of the function g. The result of the analysis of
the nested function is used as follows. When call-
ing an already analysed function, one plugs all the
sequences from the second component of its summary
into the current A or B sequence. So the analysis
of the function h produces the following sequence:
f1 g f1 f2 f3 (g f1 f2 f3). The derivated sets
for the function h are as follows: (i) {(g f1 f2 f3)},
(ii) {f1 g f2 f3}.

The above detection of atomic sequences has been
implemented and successfully verified on a set of sam-

Listing 7. An example of a code for an illustration of
the derivation of sequences of functions called
atomically with nested function call
void h(void):

f1(); g();
pthread mutex lock(&lock);
g();
pthread mutex unlock(&lock);

Listing 8. Atomicity violation
void g(void):

f1();
pthread mutex lock(&lock);
f2(); f3();
pthread mutex unlock(&lock);
f4();

void h(void):
f1(); f2(); f3(); f4();

ple programs created for this purpose. The derived
sequences of calls assumed to execute atomically, i.e.,
the B sequences, from the summaries of all analysed
functions are stored into a file, which is used during
Phase 2, described below. There are some possibili-
ties for further extending and improving Phase 1, e.g.,
working with nested locks, distinguishing the different
locks used (currently, we do not distinguish between
the locks at all), or extending the detection for other
types of locks for synchronisation of concurrent thread-
s/processes. On the other hand, to further enhance the
scalability, it seems promising to replace working with
the A and B sequence by working with sets of calls:
sacrificing some precision but gaining the speed.

5.3 Detection of Atomicity Violations
In the second phase of the analysis, i.e., when detect-
ing violations of the atomic sequences obtained from
Phase 1, the analysis looks for pairs of functions that
should be called atomically while this is not the case
on some path through the CFG.

For instance, assume the functions g and h from
Listing 8. The set of atomic sequences of the function
g is {(f2 f3)}. In the function h, an atomicity viola-
tion is detected because the functions f2 and f3 are
not called atomically (under a lock).

Implementation of this phase and its experimen-
tal evaluation is currently in progress. Based on the
results, we will tune Phase 1 as well.
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Tomáš Vojnar. Further, we would like to thank Nikos
Gorogiannis and Sam Blackshear from Infer team at
Facebook for helpful discussions about the develop-
ment of our checkers. Lastly, we thank for the support
received from the H2020 ECSEL project Aquas.

References
[1] P. Cousot and R. Cousot. Abstract interpreta-

tion: a unified lattice model for static analysis



of programs by construction or approximation of
fixpoints. In Proc. of POPL’77.

[2] T. Reps, S. Horwitz, and M. Sagiv. Precise inter-
procedural dataflow analysis via graph reachabil-
ity. In Proceedings of the 22Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, 1995.

[3] M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. In Program
Flow Analysis: Theory and Applications, 1981.

[4] S. Blackshear, N. Gorogiannis, P. W. O’Hearn,
and I. Sergey. Racerd: Compositional static race
detection. Proc. of OOPSLA’18.

[5] S. Bygde. Static WCET analysis based on ab-
stract interpretation and counting of elements.
PhD thesis, Mälardalen University, 2010.

[6] M.Sinn. Automated Complexity Analysis for Im-
perative Programs. PhD thesis, Vienna Univer-
sity of Technology, 2016.

[7] A. H. Dogru and V. Bicar. Modern Software
Engineering Concepts and Practices: Advanced
Approaches.

[8] J. Lourenço, J. Fiedor, B. Křena, and T. Vojnar.
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