
2
http://excel.fit.vutbr.cz

Platform for Cryptocurrency Address Collection
Vladislav Bambuch*

Abstract
The goal of this work is to build a platform for collecting and displaying metadata about cryptocur-
rency addresses from public and also dark web. To achieve this goal, the author uses web parsing
technologies written in PHP. Challenges accompanying a website parsing are solved by scaling
capabilities of Apache Kafka streaming platform. The modularity of the platform is accomplished by
microservice architecture and Docker containerization.
The work creates a unique way how to search for potential crypto criminal activities, that appeared
outside of the blockchain world, by building a web page application on top of this platform (that
serves for managing the platform and exploring the extracted data). The platform architecture
allows adding loosely coupled modules smoothly where the Apache Kafka mediates communication
of the modules.
The result of this article is meant to be used for cybercrime detection and prevention. Its users
can be law enforcement authorities or other agencies interested in reputations of cryptocurrency
addresses.
Keywords: web scraping — cryptocurrencies — crypto crime detection — microservices — apache
kafka — data streaming

Supplementary Material: Demonstration Video — Downloadable Code
*xbambu03@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The goal of this work is to build a web-scraping plat-
form for a collection of criminal related cryptocurrency
addresses. The platform introduces high-throughput
web mining features using data-streaming techniques
and stores the extracted metadata into persistent stor-
age for further analysis. On top of the system is a web-
based application that is meant to be used by a law
enforcement authorities searching for proof of crypto
criminal activities.

Using cryptocurrency transactions, a criminal can
exchange money for illegal services [1] extremely
quickly due to its pseudonymization features. We can
only obtain the information about who is an owner of

a cryptocurrency address when the person chooses to
expose it to the public. Due to the natural behaviour of
Internet websites and their dynamic content changes,
we need to look up for this type of information reg-
ularly. This topic is worthy of exploration as we do
not have sufficient tools freely available that would
address the mentioned difficulties.

Currently, there are many websites focusing on
displaying cryptocurrency addresses1, some of them
also contain owners for particular addresses subset2

or general discussions about cryptocurrencies3. The

1https://bitinfocharts.com
2https://www.walletexplorer.com
3https://bitcointalk.org

http://excel.fit.vutbr.cz
https://github.com/nesfit/bambuch/tree/master/crypto-corvid
mailto:xbambu03@stud.fit.vutbr.cz


data on those websites can help to clarify what hap-
pened outside of blockchain and to map pseudonymous
crypto-addresses to real users. There are also websites4

focusing on collecting addresses seen in fraud emails
and other forms of extortion activities. On the other
hand, we lack a web application that would unify and
link all the data from mentioned websites and provide
possibility to search in them. The result of this paper
aims to fill this blind spot.

Given the fact that there are many websites with
interesting data from Open-source intelligence (OS-
INT) point of view and do not expose any Application
Programming Interface (API), this platform enables
smooth integration of parsers for particular websites.
Those parsers can be implemented as results of school
projects or theses and without dependency on a pro-
gramming language.

The potential amount of data this platform is go-
ing to process is enormous. This requires designing
a robust architecture that provides parallel data pro-
cessing using scalability features and fault-tolerant
properties. All modules need to be excessively super-
vised by a monitoring tool, and its metrics displayed in
a coherent dashboard. The monitoring enables alerting
when some soft-dependency is broken, but without
the need of stopping all modules. This approach fol-
lows the microservices architecture design [2].

At the output of this platform lies scraped cryp-
tocurrency metadata that can be searched with a sim-
ple web-based application on top of the system. The
application also allows maintenance of the underling
backend layer and scheduling of repetitive jobs. Law
enforcement authorities and, in general, all agencies
interested in reputations of specific cryptocurrency ad-
dresses can use this system.

This work is a part of the project Integrated plat-
form for analysis of digital data from security inci-
dents5, developed at Brno University of Technology,
and it is planned to integrate it with its other compo-
nents.

2. Challenges The Platform Faces
In this chapter, there are explained several challenges
the platform is dealing with and how they are solved.

This paper tackles many obstacles from a data col-
lection point of view, as well as using reliable process-
ing and transformation until the results can be moni-
tored, stored and kept in persistent storage. Each of
these obstacles has to align with the intention to imple-
ment modules loosely coupled, language-independent,

4https://www.bitcoinabuse.com
5https://www.fit.vut.cz/research/project/1063/.en

and as general as possible.

The following challenges are discussed in this chapter:

• Scraping unstructured data;
• Rate-limiting;
• Browser fingerprinting;
• Processing vast amount of data;
• Sharing parsed data across processes;
• Parallel task execution;
• Data quality of scraped results.

2.1 Cryptocurrency Websites Parsing
The reason why we want to scrape data from public
sources is quite simple. We do not have enough infor-
mation to successfully find relations between data in
the blockchain and real-world entities. It is necessary
to mention that the extraction of the data is aligned
with OSINT initiative, and therefore, all of the infor-
mation is publicly available. That being said, privacy
issues are not related to this topic.

The idea is to collect as much data as possible and
to perform it fast and frequently. The disadvantages
to this idea are application security measures, such
as rate-limiting, browser fingerprinting or traffic throt-
tling. There are also issues with dynamic structural
changes of the websites and currently highly popular
isomorphic web applications [3].

The limitation of requests a website is receiving
can be overcome by IP address pool and performing
requests to a single website on behalf of different IP
addresses. This behaviour can be accomplished by
the help of proxy servers and rotation of addresses
they expose.

Browser fingerprinting is a technique employing
HTTP headers like User-Agent, Connection,
Encoding or Language and other connection pa-
rameters to find a network entity even if it swaps IP
addresses. The User-Agent is the essential header
in this scenario and therefore changing its value is
an effective way how to deal with this challenge [4].

Both of the mentioned principles are handled by
a proxy module. Implementation of the module is
delivered by project Lemmit that was created as a result
of thesis Automated Web Analysis and Archivation [5]
which is integrated into the platform. The project
also consists of archival module executing JavaScript
code and extracting fully-loaded Document Object
Model (DOM). Integration of this feature into the work
suppresses the issue with isomorphic websites.

Every scraper in this work is built using Goutte [6].
Goutte is a library for web crawling and scraping that is
written in PHP. In the PHP community, Goutte is some-



what of standard for scraping techniques. It is truly
easy to load a web page, filter some HTML elements,
iterate over them and extract all necessary data. This
library cannot handle isomorphic web applications, but
it is solved by a combination of the mentioned smart
proxy server.

Finally, the structural changes of scraped websites
are handed by extensive monitoring capabilities of all
requests and expecting responses. Therefore, every
detected DOM change triggers an alert.

2.2 The Platform Data Processing
As it was mentioned before, the idea is to collect pub-
licly available metadata as fast as possible and without
being blocked by application firewalls. To conquer
the problem, the author of this platform introduces
massive parallel processing using the Apache Kafka
streaming platform. An illustration of how particu-
lar Kafka APIs communicate together is present in
Figure 1.

The system consists of several loosely coupled
modules, performing a single task. Every web-scraping
module is subscribed to a data stream and listens for
incoming messages – URLs that need to be parsed.
When a message is processed, its result is sent to
an output data stream by which are other modules
notified. By this principle, modules can interact asyn-
chronously and share the same information between
multiple simultaneously running processes. The core
of the described communication is the Apache Kafka,
that is described in this section.

Kafka is a distributed streaming platform, allowing
to publish and subscribe to particular data flows. It
is used for building reactive event-driven applications
and also for building data pipelines for reliable commu-
nication between systems. Kafka provides high-speed
and fault-tolerant data processing for which has been
chosen in many enterprise solutions6.

In comparison to a traditional message-queuing
system, Kafka is capable of storing messages persis-
tently and does not delete them when they are read.
That enables reproducing the whole sequence of events
if needed and reading one message multiple times
using different logic of different data consumers [7].
This technology combines two concepts, queuing and
publish-subscribe, and solves their issues using Kafka
Consumer Group. That means advantages from both
models – in-order delivery and parallel processing –
are merged together [8].

This data streaming platform can be operated as
a cluster on multiple servers which proves this tech-

6https://kafka.apache.org/powered-by

Figure 1. The Kafka architecture diagram is showing
how many types of modules can be connected
together through this data-streaming platform.

nology is an excellent choice for fault tolerance and
data replication. One cluster stores stream of records
aggregated into categories called topics. Each record
has a key, a value and a timestamp [9].

One Kafka topic can be distributed across multiple
partitions. The number of partitions goes hand in hand
with the level of parallelism.

2.3 Storing Crawling Progress
Every website that is supposed to be scraped is crawled
at first, and all required URLs are extracted. Individual
URL addresses are stored with additional metadata.
For example, if a page has been parsed already or
if a page is the last one from a sequence of pages.
This metadata can be used for running scrapers on
appropriate pages or for other robots to know where to
start a new round of crawling a website.

Storing the crawling process provides better vis-
ibility on performing tasks and speeds up the whole
data flow.

3. The Platform Architecture Overview
This chapter contains detailed information about the ar-
chitecture of the platform and what technologies are
used to build loosely coupled, highly modular, data-
streaming system.

The platform (depicted in Figure 2) consists of
the following modules:

• Web crawlers – collect URL addresses from
websites, store them into a database and shares
them with other modules through Kafka topics.

• Web scrapers – parse web pages according to
crawled URL addresses and extract interesting



Figure 2. The platform architecture diagram. The blue elements are databases, the green are associated with
a web browser, the grey are data-processing modules and the red one is the core – Apache Kafka.

metadata. The data are streamed back to Kafka
for further processing.

• Scrape consumer – consumes resulting metadata
from all scrapers and stores them into the database
with a unified schema.

• Proxy service – allows making HTTP requests
to a single website from multiple IP addresses
at the same time. It ensures application firewalls
will not block the scrapers. The module is pro-
vided by the project Automated Web Analysis
and Archivation [5].

• Apache Kafka with Zookeeper7 – the core mod-
ule of the entire system. It is a scalable, robust
and fault-tolerant streaming platform that as-
sures all the modules can communicate in a sim-
ple and unified way.

• PostgreSQL – stores the resulting scrapes and
information about processing statuses of all web-
sites in URL table, DOM archives and Scrape
table.

• Graylog monitoring tool – web-based monitor-
ing tool for all parts of the platform.

• Lemmit – it gets URL addresses from Kafka
topics so that archives whole DOM structure
of a webpage. The DOM structure is used as
evidence that data were present on a particular

7https://zookeeper.apache.org

webpage at the time of scraping [5].
• Web UI – allows an admin to manage the plat-

form, to run parsing jobs manually and to sched-
ule them. It also empowers a user to inspect
the scraped data in order to see cryptocurrency
activities that appeared outside of blockchain
world. Every scraped information is linked to
the proof mentioned above.

3.1 Platform Modularity
Platform is written in PHP with use of Laravel frame-
work. In this work, the framework is employed for
web scraping, communication with the PostgreSQL
database and for building CLI commands that manage
separate modules. Scheduling features in the platform
are implemented by Laravel Scheduler.

Even though there is used single programming lan-
guage almost for the whole platform, it does not mean
all future extensions has to be written in it. The idea
is that all core modules are language independent and
communicate through a unified API. It means a spe-
cific web scraper module can be implemented by any
programming language and reuse common modules
if it meets the API requirements. This principle al-
lows fast prototyping of new scraping modules without
the need to understand the complexity of the entire sys-
tem. That being said, the problematic part of website



Figure 3. Monitoring example of one of bitcointalk.com scrapers. This graph was taken from a dashboard
containing eleven, quite similar bitcointalk-monitoring graphs.

scraping is fully covered by this work and the more
straightforward parts can be added seamlessly.

The archiving and proxy modules, database or
monitoring tool, can also be smoothly changed to
different implementation or other technology. This
enables the possibility to keep track of technology al-
ternatives and swap them if needed. The architecture
with loosely coupled parts allows doing that without
unnecessary changes.

Platform modularity is powered by Docker contain-
ers. The modules are divided into several categories,
that can be seen in the platform diagram 2:

• Web crawlers/scrapers;
• Apache Kafka;
• PostgreSQL database;
• Graylog with supplementary databases;
• Web server powering the web application;
• Proxy server;
• Lemmit.

Every mentioned category runs in a separate Docker
container and in the case of Web crawlers/scrapers it
is expected to have tens of containers running simul-
taneously. All the modules are managed by Docker
Compose that allows defining container dependencies,
internal network communication and many other prop-
erties8.

3.2 Data Layer Architecture
In this work, the author uses PostgreSQL database
engine for the following purposes:

• saving all extracted data and their metadata in
a unified structure,

• for metadata about individual web pages,
• for additional information about cryptocurren-

cies and websites categorization.

8https://docs.docker.com/compose

PostgreSQL is associated with URL table, Scrape table
and DOM archives in the diagram 2.

The data layer also contains MongoDB and Elas-
ticsearch technologies. Both of them are related to
Graylog monitoring tool where MongoDB is used to
store configuration files and Elasticsearch keeps all the
logs produces by the platform. The Graylog-related
databases correspond to Elasticsearch module in 2.

3.3 Unified Database Schema for All Parsers
It is crucial to keep data quality of scraped content at
the highest possible level. Otherwise, any additional
processing can be extremely difficult.

The database schema for storing the scraped data
consists of particular tables:

• Owners – contains re-identified owners of crypto
wallets;

• Identities – there are stored metadata about a page
from where an owner and its address has been
extracted;

• Addresses – contains scraped crypto addresses
and their metadata.

4. The Platform Monitoring
This chapter focuses on monitoring of the entire plat-
form and describes how critical this step is in software
development.

Monitoring of the final product is one of the es-
sential steps in software development. Without proper
real-time behaviour analysis and alerting system, it
is nearly impossible to maintain and operate complex
systems [10].

This work uses Graylog tool for overseeing the en-
tire platform. All modules stream logs into this tool.
Graylog uses Elasticsearch DB to store the logs and
MongoDB for managing configuration files. The tool
is capable of displaying metrics generated from logs,
creating alerts, dashboards, investigating log streams



Figure 4. On the left screenshot, there are metadata as a result of a cryptocurrency address lookup. The right
side shows a copy of a DOM associated with the searching address. The DOM copy is displayed after clicking
on the ”Show DOM” button.

and has many other features that are useful for monitor-
ing such complex systems. Figure 3 shows an example
of a graph with metrics from scraping bitcointalk.com.
The Kafka module produces the following metrics:

• stored – number of records stored into Post-
greSQL database;

• produced – number of messages streamed into
Kafka output topic;

• consumer – number of messages consumed from
Kafka input topic;

• warning – number of connection warnings, in
this case, it is when the scraper hits rate-limits
of a particular website;

• other less exciting metrics.

5. Searching In The Results
This chapter introduces a web-based application that
is capable of searching in the scraped metadata and
scheduling repetitive scraping jobs.

The described platform is capable of generating
a massive amount of cryptocurrency metadata. Only
an intuitive search engine with a friendly user inter-
face can maximize the data usage though. To reach
the maximal potential of the scraped data, the author
also designed and implemented a simple web-based
application in PHP and Vue.js as a part of the work.

The web search engine has three major use-cases where
a user can search for the following information and

receive these properties:

• a cryptocurrency address;

– category – Exchange, Mining pool, Person,
Scam, etc.;

– currency – BTC, LTC, ETH and others;
– owner – an identified internet entity;
– references – what web pages contain the ad-

dress;
– timestamps – when was the address scraped

for the first time and when was updated at
the last time.

• a source of a scraped data;

– URL – web address of the source;
– type – Web forum, Social network, Abuse

report tool etc.;
– addresses – which addresses were scraped

from the source.

• an owner or wallet.

– category – Exchange, Person etc.;
– sources – which websites contain a men-

tion of the owner;
– addresses – list of addresses assigned to

the wallet.

Figure 4 shows screenshots of the implemented
web-based search engine. The engine displays re-
sults from search by a bitcoin address. The result
discovers hypothetical user mOtex2 that is classified



as an abuser, and also there are displayed several activ-
ities, associated with the user. Every activity is asso-
ciated with a DOM copy from the time of scraping so
a user of this application can see the proof from where
was the information taken. The DOM copies are pro-
vided by archival capabilities of integrated project [5].

6. Evaluating The Platform

This chapter describes several ways of how the plat-
form is evaluated and possible testing improvements
that might be implemented in the future.

When the infrastructure part of the platform is exe-
cuted, it takes around one minute to get the data stream-
ing module, with two monitoring tools and databases,
prepared for operation. After that, the scraping/crawl-
ing modules can be triggered.

Every crawler stores an URL metadata into a data-
base and streams them into Kafka topic simultaneously
(note, this can be simplified by using Confluent Kafka
Connectors9). This is the first touchpoint where we can
verify the behaviour. First of all, we know the numbers
from the monitoring 3, but we can also perform SQL
query in the database as well as in the Kafka, so all
the numbers have to match for a specific time–topic–
crawler combination. After performing this, we can be
sure the data are not lost during the process. The simi-
lar evaluation can be done for all the web-scrapers as
they also stream/store data into two destinations, and
all the scrapers are monitored.

The second touchpoint is verifying whether the
scraped data are actually associated with the correct
webpage. Currently, this is manual work and can be
surely automated. We can use the web application,
built on top of the platform, to search for a specific
crypto address and click on the link, associated with
the search result 4. The address has to be present on
the page.

Due to the fact that some websites were scraped
by other projects at FIT BUT in previous years, we
can also compare the older data with currently scraped
results. This touchpoint is just a theory, and no such
a cross-project comparison has been performed yet.

The very interesting finding would be to compare
how much time it takes when the web scraping is per-
formed sequentially and with the use of Kafka par-
allelism. Currently, this analysis is also not possible
because the platform is missing a connection with
the smart proxy that is using an IP address pool. It
means, the scrapers work in parallel, but they have to
wait in order to not to hit rate-limiting.

9https://www.confluent.io/connectors

This paper does not conduct any results in terms of
the platform performance. These results are associated
with the performance of the Apache Kafka covered by
the study Kafka versus rabbitmq [8].

7. Conclusions

The goal of this work was to implement a platform for
collecting cryptocurrency addresses and web applica-
tion for managing this platform. The platform meant
to be highly modular with monitoring for each module
and suppose to utilize scalability features. The core of
this platform should parse interesting web pages con-
taining cryptocurrencies metadata and store the data
into storage with a unified database scheme. The data
should be extracted from publicly available sources
according to the definition of OSINT.

The solution had to be platform-independent. The
platform independency supposes to be achieved by
Docker containerization and using loosely coupled
modules communicating through the Apache Kafka
streaming platform.

The author successfully designed and implemented
the platform with the aim of modularity and easy ad-
dition of new webpage parsers. The whole platform
composes from multiple Docker containers. The pars-
ing core of this platform consists of several tasks that
are scheduled from a web application and all of them
are monitored through Graylog service. The platform
uses PostgreSQL as a persistent data storage.

The processing pipeline outputs metadata about
cryptocurrency addresses that are used to searching for
activities that happened outside of blockchain world.
For the searching purposes, there was implemented
web-based application. The gained information can
lead to crypto criminal activities detection. With a com-
bination of integrated project Automated Web Analysis
and Archivation, the created system is able to provide
legal evidence of scraped data validity.

This work solves most of the web parsing issues
and enables seamless extensibility of scraping modules
that can be implemented during networking courses
here at BUT FIT or as part of Bachelor’s or Master’s
thesis. Currently, all the scrapers cannot reach the max-
imal speed due to rate-limiting because of the missing
proxy server. The proxy will be implemented later.

The core functionality is meant to be published
as open-source software. The author plans to continue
with further development and to connect all parts of
project [5] with this platform.



Acknowledgements
I would like to thank my supervisor Mr. Ing. Vladimı́r
Veselý, Ph.D. for his professional guidance and Ing.
Tomáš Kocman for help with the integration of his
master’s thesis.

References
[1] Dante Disparte. Crypto crime is tak-

ing a violent turn. online, Apr 2020.
https://www.forbes.com/sites/
dantedisparte/2019/01/28/crypto-
crime-is-taking-a-violent-turn.

[2] Wilhelm Hasselbring. Microservices for scalabil-
ity. Keynote Talk Abstract, 3 2016.

[3] Megan Mary Jane. How to bypass anti-scraping
techniques in web scraping. online, Apr 2020.
https://bigdata-madesimple.com/
how-to-bypass-anti-scraping-
techniques-in-web-scraping/.

[4] Pierre de Wulf. A guide to web scraping without
getting blocked in 2020. online, Apr 2020.
https://www.scrapingbee.com/blog/
web-scraping-without-getting-
blocked.

[5] Tomáš Kocman. Automated web analysis and
archivation, 2019.

[6] FriendsOfPHP. Goutte, a simple php web scraper.
online, Apr 2020. https://github.com/
FriendsOfPHP/Goutte.

[7] Hendrik Swanepoel. A super quick com-
parison between kafka and message
queues. online, Apr 2020. https:
//hackernoon.com/a-super-quick-
comparison-between-kafka-and-
message-queues-e69742d855a8.

[8] Kyumars Sheykh Esmaili Philippe Dobbelaere.
Kafka versus rabbitmq: A comparative study of
two industry reference publish/subscribe imple-
mentations: Industry paper. ACM International
Conference on Distributed and Event-based Sys-
tems, (11):227–238, 2017.

[9] Apache.org. Kafka introduction. online,
Apr 2020. https://kafka.apache.org/
intro.

[10] Gregor Scheithauer Matthias Winkler, Jorge Car-
doso. Challenges of business service monitoring
in the internet of services. International Confer-
ence on Information Integration and Web-based
Applications Services, (10):613–616, 2008.

https://www.forbes.com/sites/dantedisparte/2019/01/28/crypto-crime-is-taking-a-violent-turn
https://www.forbes.com/sites/dantedisparte/2019/01/28/crypto-crime-is-taking-a-violent-turn
https://www.forbes.com/sites/dantedisparte/2019/01/28/crypto-crime-is-taking-a-violent-turn
https://bigdata-madesimple.com/how-to-bypass-anti-scraping-techniques-in-web-scraping/
https://bigdata-madesimple.com/how-to-bypass-anti-scraping-techniques-in-web-scraping/
https://bigdata-madesimple.com/how-to-bypass-anti-scraping-techniques-in-web-scraping/
https://www.scrapingbee.com/blog/web-scraping-without-getting-blocked
https://www.scrapingbee.com/blog/web-scraping-without-getting-blocked
https://www.scrapingbee.com/blog/web-scraping-without-getting-blocked
https://github.com/FriendsOfPHP/Goutte
https://github.com/FriendsOfPHP/Goutte
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
https://kafka.apache.org/intro
https://kafka.apache.org/intro

	Introduction
	Challenges The Platform Faces
	The Platform Architecture Overview
	The Platform Monitoring
	Searching In The Results
	Evaluating The Platform
	Conclusions
	References

