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Abstract
Testing multicomponent systems in IT and IoT that process the sequences of different messages
is a complicated task. Why it is complicated? Because of number of components, asynchronous
interaction, different combinations of actions to test, test environment differs from real environment
and others. This paper introduces an idea how to generate complex input data for system testing
while requiring minimum intervention from a developer. The test data generation is based on
analysis of traces of communication in a real system, and reproduction of similar traces for testing
purposes. The paper also proposes a framework for initial analysis of messages transferred within
the recorded communication. The problem can be solved using different abstract models: the
message model, the communication model. The result of this work is the implemented library for
creating a message model with a set of operations for working with this model.
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1. Introduction
The reason for this project is the design of a reliable
framework for testing the multicomponent IT/IoT sys-
tems that process massive streams1 of messages.

This work is devoted to the design and implemen-
tation of the library that allows creating the message
abstract model. The models can be used to generate
similar messages. The generator can mutate the mes-
sages that sent to the component under the test, and
its reaction to mutated messages can be observed. The
message model can be evaluated using the ratio of the
model size versus the training set size, its overhead,
accuracy and expressiveness (explained below).

One attempt to implement something similar was

1In this article, the stream has a meaning of potentially infinite
sequence.

made by Ondřej Znojil at the Faculty of Information
Technologies at Brno University of Technology, de-
scribed in his bachelor thesis [1]. The potential struc-
ture lose is the disadvantage of this implementation.
Another cons is the inability of model creation at the
runtime. This solution also requires a configuration file
to start, that makes it need to have preliminary knowl-
edge; and is not able to train on a set of messages.

Another attempt of implantation was made by Dušan
Želiar at FIT BIT [2]. The solution can train from the
set of messages, thanks to using the RabbitMQ2. The
tight coupling with the components from TESTOS3

2RabbitMQ is the open source message broker.
https://www.rabbitmq.com/

3TESTOS (Test Tool Set) platform supports automation of
software testing, see http://testos.org/.
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is disadvantage of the solution. Another cons is the
limited amount of meta-information about the mes-
sages that could be stored. The clustering4 algorithms
usage also makes the solution suffer from the potential
structure loss.

With our solution, we are able to process sets as
well as streams of messages. Thanks to the designed
model structure, we do not lose the message struc-
ture. We are able to store different kinds of meta-
information that can be added/removed at runtime.
Moreover, the library has template methods for the
message structure manipulation and those methods
can be enriched using the implementations of prepared
interfaces. The library is stand-alone and does not cou-
ple with other platforms and it can be easily expanded
by new functionality and used in different projects.

The design of this library not only provides flexi-
bility in use but also provides an opportunity to expand
it. Thanks to different design patterns (such as strategy,
chain of responsibility, composite), the library is easy
to refine and expand with a new functionality. It is also
a stand-alone project and can be used with a different
purpose rather than a generation of the sequence of
messages.

Section 2 starts with the working example and
describes how to use hierarchical data structures for
the message representation. Section 3 describes the
designed functionality. Section 4 explains the experi-
ments conducted with the library and summarizes the
results.

2. Hierarchical Data Structures and
Their Use for Message Representation

Let’s start with a working example. Let there be a pro-
ducer and consumer. The heater and the barometer
periodically report their temperature and pressure to
the producer. The producer enriches received mes-
sages by adding a timestamp. After enrichment, the
producer sends the messages to the consumer. The
consumer executes some logic based on the received
messages. So this is our communication model.

The heater and the barometer send the messages
of different types: one of them reports the temperature
and other the pressure. Having a sample of commu-
nication, we can create models describing the mes-
sages. Those models describe a message structure and
contain meta-information such as the number of mes-
sages, min/max value of the temperature/pressure, the
standard deviation of temperature/pressure, and others.

4Clustering is a process of grouping a set of object in such a
way that objects in the same group (cluster) are more similar to
each other.

This idea is depicted in Figure 1. The red messages
report the temperature and blue ones, the pressure.

The example described above is a simple industrial
network. Now let’s say that messages sent by the
producer are documents in XML format. An XML
document can be represented as a tree structure. So
we can say that the producer generates a stream of tree
structures and sends it to the consumer, and the stream
consists of two types of messages.

In this work we consider only a specific subset
of all possible XML documents. For us, the XML
document can not have inner element and text content
at the same time. If an element has an inner element
and text content, the text content is ignored, see Listing
1. The bar is a text content of the <outer> element
and is ignored. We do it because of the low probability
of such messages and the formal model (described in
the text below).

<outer>
bar
<inner>foo</inner>

</outer>

Listing 1. An example of XML document with
ignored text content.

For a tree-like representation of XML document the
next approach is chosen:

• a node without parent (root node) represents an
outermost element,
• a composite node represents each element that

has at least one inner element,
• a primitive node represents an element that has

no inner elements,
• the attribute node represents an attribute of an

XML element.

Listing 2 and Figure 2 give an idea of tree-like XML
document representation.

It is worth noting that the messages of the same
type not necessarily have the same structure. E.g., if
the heating coil has not yet warmed up, the heater
can send a message reporting the ”warming up” mode
till the coil have the sufficient temperature. In order
to create a message model, we need to capture the
structures of all possible messages of the same type
as well as meta-information about the content. In this
work, the structure describing all trees carrying the
messages of the same type is called an abstract-tree.
The abstract-tree also contains a probability of the
particular node present in the path.



Figure 1. Example of a simple industrial network.

<device>
<name>Heater</name>
<id>H-42</id>
<timestamp format="MMM dd HH:mm:ss">

Mar 16 08:12:04</timestamp>
</device>

Listing 2. Example of reported XML document.

Figure 2. Tree-like representation of XML
document from Listing 2.

3. The Library Design

The goal of this work is the design and implementation
of a library for the creation of model of messages with
tree-like structures. In the end, the implemented library
should:

• be able to represent as tree structures,
• be able to create the message model without

structure loss, i.e., construct an abstract tree
above the messages set and collect meta-infor-
mation,
• provide a set of operations (group, reduce, merge)

to manipulate with a tree structure.

3.1 Unified Representation
A way of representing hierarchical data as tree struc-
tures was already depicted in Figure 2. To summarize
and formalize it: we consider only the subset of XML
documents and represent them as tree structures, a tree
structure is a tuple

T = (C,P,A,E)

where:

• C is a composite node and represents an XML
element that contains at least one inner XML
element,
• P is a primitive node and represents an XML

element that does not contain any inner XML
element,

• A is an attribute node and represents an at-
tribute of an XML element,
• E ⊆ {(u,v)|u ∈C∧v ∈C∪P∪A}∪{(u,v)|u ∈

P∧v ∈ A} is a set of edges connecting all nodes
and between two different nodes only one path5

exists.

The text content of an element with an inner element is
ignored. Table 1 describes a parent-child relationship
between the nodes.

Any structured document in JSON or YAML for-
mats can be transformed into XML with predefined
node type translation.
Table 1. A tree structure hierarchy description. The
null parent means that the node is a root.

Node Parent Children Type of value
C {C,null} {C,A,P}∗ None
P {C,null} A∗ Strings
A {C,P} None Strings

3.2 The Operations
The group operation is a unary operation and creates
equivalence partitions on the collection of nodes based
on the equivalence criteria (see Section 3.3). This op-
eration is useful when it is needed to apply an abstract
function on the cluster of nodes, e.g., the reduce op-
eration or choosing particular nodes from the group.
Figures 3 and 4 depict this operation.

5In graph theory a path is a sequence of edges which join a
sequence of nodes.



Figure 3. Before group operation. Figure 4. After group operation.

The reduce operation is a unary operation and
creates a single representational node from multiple
nodes. The representational node describes a set of
nodes and holds enough data for generating a set of
similar nodes. The nodes reduction leads to a more
compact tree representation with no data loss, up to
order of nodes in different equivalence classes. The
reduction also collects meta-information such as the
number of reduced nodes. Figures 5 and 6 depict this
operation.

The merge is a binary operation and is essential for
abstract-tree creation. The essence of this operation is
to match the equivalent nodes on the same level among
different trees and merge them. The two nodes that are
to be merged carry out the same semantic information.
The nodes that did not match any other node are just
added into the result tree. While merging the meta-
information is stored, e.g., numbers of times the node
was present among all trees, min (max) value of the
node, or a history of the values. Let there be two trees
depicted in Figure 7 and 8. Figure 9 depicts the result
of merging these trees.

3.3 Equivalence Criteria
An equivalence criterion describes a case when two
or more nodes are equal. Such criteria are used for
grouping and for merging. In the case of complex
communication with lots of different messages, those
criteria can possibly change at runtime; therefore, the
library should provide predefined set of different crite-
ria and means for combining them. Let there be two
nodes A,B; for the purpose of this work, the following
criteria were proposed:

• by-name states that A,B are the same iff they
have the same name,
• by-value states that A,B are the same iff they

have the same value,
• by-children is the recursive criterion and states

that A,B are the same iff they are same, and their
corresponding (the place of the node in the tree
defines correspondence) child-nodes are also the
same; the nodes equivalence is defined by the
by-name, by-value, and by-attributes criteria,
• by-attributes states that A,B are the same iff

the set of attribute-nodes of A (B) is a subset of
a set of attribute-nodes of B (A).

4. Experiments
Firstly we focused on functional requirements. The
simple proof of concept application was created to
prove the library usability. This application uses a
simple training set with 10 XML documents and works
with the next steps:

• reads the documents one by one,
• for each document creates its tree-like represen-

tation,
• traverse the representation and groups the child

nodes of each node by by-name criterion and
reduces each group, so creates a single represen-
tational node, the representational nodes become
child nodes for the current one,
• the result of the previous step is the compact

representation of the tree-like representation,
• all those representations are merged into one

abstract-tree, and each value of each node is
stored,
• the created model is used to generate the similar

XML documents to ones from the training set.

Among function requirements, some of the non-
functional requirements were verified.

Extensibility. The library was designed with the
idea that some of the components can be expanded, so
using the design patterns such as composite, command,
and the chain of responsibility give a wide potential
for future extension.

Maintainability. The library was designed to be
maintainable and self-documented. All operations
are accessed by components through the interface, so
a new implementation of an interface can easily re-
place the old one.

Performance. The library is be able to process a
massive amount of messages; it is necessary to parse
them and create the tree structures as well as perform
operations like group, merge, reduce relatively fast.
It also needs to create as smallest models as possi-
ble without the structure loss and with enough meta-
information about messages in order to generate sim-
ilar ones. For the performance tests of the library,
the real sample of communication of the industrial
network was chosen – the colleagues from VeriFIT6

6https://www.fit.vut.cz/research/group/verifit/.en

https://www.fit.vut.cz/research/group/verifit/.en


Figure 5. Before reduce operation.

Figure 6. After reduce operation.

Figure 7. Left tree T1. Figure 8. Right tree Tr

Figure 9. The merged trees Tl and Tr.

research group preprocessed that sample and provided
7 clusters of XML messages.

The first set of experiments are experiments with
the model sizes. The worst-case model simply stored
seen values of each node, the best-case model does
not store any value, but only the structure. The size
of the worst-case model is almost 5 times more than
the size of the original set. The reason for this is the
object representation of XML elements and the need
to serialize meta-information about the collections of
values and references on other objects. The size of
the best-case model is significantly less than the orig-
inal size. Those experiments demonstrate that with
an efficient values analyzer, that allows ignoring some
values, it is possible to significantly reduce the model
size without losing the exactness of generated values.

The second set of experiments is with the time
of the creation of tree structure from the input XML
document and merging two trees. Table 2 contains
these measurements and Figure 10 depicts the ratio of
sizes.

The third set of experiments is made to check the
model’s accuracy, structure-overhead, and expressive-

ness. Let there be an abstract-tree AT =(CA,PA,AA,EA,σ)
created from the collection of trees with the different
structures TC = {T1,T1 . . .Tn}, where Ti =(Ci,Pi,Ai,Ei),
and let there be a set of trees describing XML docu-
ments with the different structures TC′= {T ′1,T ′2 . . .T ′n},
where T ′i = (C′i ,P

′
i ,A
′
i,E
′
i), then:

• accuracy is a ratio between the number of nodes
from T ′i covered7 by nodes from AT and total
numbers of nodes from T ′i ,
• structure-overhead is a ratio between the num-

ber of nodes from AT used to cover T ′i and the
total number of nodes in AT ,
• expressiveness is a ratio between the number

of nodes from AT used to cover a T ′i and the
number of covered nodes from T ′i .

The experiments were conducted with the following
steps:

1. create a model AT of all trees TC describing the
XML documents from the training set,

7Cover means to match the nodes from T ′i with the nodes from
AT .



Figure 10. The comparison of the sizes of the original cluster, the worst-case model, and the best-case model.

Table 2. The sum-up of the experiments with models’ sizes and times of the tree structures creation and trees
merging.
Num. of docs. defines the number of documents in a cluster,
Cluster size defines the size of the whole cluster,
Worst/best-model size defines the size of the model in the worst/best cases,
Avg. tree creation time defines the average time of creating a tree-representation of one document in the
cluster (+/- standard deviation),
Avg. trees merging time defines the average time of merging two trees from the same cluster (+/- standard
deviation).

Cluster 1 432 2 425 3 432 4 432 5 432 6 432 7 432
Num. of docs. 432 425 432 432 432 432 432
Cluster size[MB] 9.5 0.42 1.015 11.448 1.455 0.833 19.137
Worst-model size[MB] 51.5 1.81 5.04 61.9 5.65 3.48 77.96
Best-model size[MB] 0.15 0.01 0.03 0.18 0.02 0.016 0.27
Avg. tree creation
time (+/- std. deviation)[ms]

3.3
(+/- 2.6)

0.02
(+/- 0.16)

0.13
(+/- 0.6)

4.18
(+/- 3.3)

0.11
(+/- 0.6)

0.04
(+/- 0.27)

6.66
(+/- 3.67)

Avg. trees merging
time (+/- std. deviation)[ms]

1.97
(+/- 2.1)

0.002
(+/- 0.05)

0.08
(+/- 0.5)

1.83
(+/- 2.03)

0.02
(+/- 0.19)

0.009
(+/- 0.096)

3.5
(+/- 3.46)

2. in order to check the accuracy, structure-overhead,
and the expressiveness of AT cover each tree,
from TC′ that represent the documents from the
test set, and record:

• the number of nodes in T ′i ,
• the number of covered nodes of T ′i ,
• total nodes of AT ,
• nodes from AT used to cover T ′i .

3. calculate accuracy, structure-overhead, and ex-
pressiveness based on recorded values,

4. remove one document from the training set and
repeat the loop start with step 1 until the training
set is not empty.

Some of results of experiments are present in tables 3,

4, 5, and 6 where:

• the representational from the cluster is a clus-
ter containing T ′i ,
• used nodes from AT is a number of nodes from

the abstract-tree used to cover the nodes from
T ′i ,
• total nodes in T ′i is a total number of nodes of

T ′i
• the covered nodes of T ′i is a number of nodes

from the T ′i that are covered by nodes from AT .

If a document is a part of the training set, another doc-
ument from the same cluster is 100% covered, so accu-
racy is 1. If the document is not present in the training
set, the accuracy is 0 and the structure-overhead is



1 (no one model node was used). The expressiveness
equal to 0 means that N nodes from AT cover N nodes
of T ′i , so there is a bijection between the model nodes
subset and T ′i nodes subset. The accuracy in the inter-
val (0;1) means that some parts of XML documents
have the same structure starting with the root element.

5. Conclusions
This paper suggests an approach of how to analyze
the streams of messages in multicomponent systems
and generate a similar ones with the test purpose. In
order to do it, it needs to create models describing the
streams from different perspectives: the communica-
tion model and the message model. Here is described
the implemented library for creating a message model.

In order to create a message model, it is necessary
to have a set of messages that do not necessarily have
the same structure. Merging the tree representations
of those messages and storing meta-information that
matters for a particular domain, it is possible to create a
model without the structure loss and content loss. This
library is already used in a more significant project that
intended to develop a system for automatic analysis of
streams of messages and generating similar ones. This
library also can be used with the purpose of anomaly
detection in the message structures.
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účely testovánı́ software. Master’s thesis, Brno
university of technology, Božetěchova 1, 612 00
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Table 3. Experiment with |TC|= 7 (size of the training set), and |CA∪PA∪AA|= 266 (total number of nodes in
the model).

The representational
from the cluster (T ′i ) 1 432 2 425 3 432 4 432

Used nodes
from AT 83 29 25 54

Total nodes in
T ′i (|C′i ∪P′i ∪A′i|)

673 29 119 798

The covered nodes
of T ′i

673 29 119 798

Accuracy 673
673 = 1 29

29 = 1 119
119 = 1 798

798 = 1
Structure-overhead 1− 83

266 ≈ 0.69 1− 29
266 ≈ 0.89 1− 25

266 ≈ 0.9 1− 54
266 ≈ 0.79

Expressiveness 1− 83
673 ≈ 0.88 1− 29

29 = 0 1− 25
119 ≈ 0.79 1− 54

798 ≈ 0.93

Table 4. Experiment with |TC|= 6, and |CA∪PA∪AA|= 237.

The representational
from the cluster (T ′i ) 1 432 2 425 3 432 4 432

Used nodes
from AT 83 0 25 54

Total nodes in
T ′i (|C′i ∪P′i ∪A′i|)

673 29 119 798

The covered nodes
of T ′i

673 0 119 798

Accuracy 673
673 = 1 0 119

119 = 1 798
798 = 1

Structure-overhead 1− 83
237 ≈ 0.65 1 1− 25

237 ≈ 0.89 1− 54
237 ≈ 0.77

Expressiveness 1− 83
673 ≈ 0.88 0 1− 25

119 ≈ 0.79 1− 54
798 ≈ 0.93

Table 5. Experiment with |TC|= 5, and |CA∪PA∪AA|= 225.

The representational
from the cluster (T ′i ) 1 432 2 425 3 432 4 432

Used nodes
from AT 83 0 13 54

Total nodes in
T ′i (|C′i ∪P′i ∪A′i|)

673 29 119 798

The covered nodes
of T ′i

673 0 99 798

Accuracy 673
673 = 1 0 99

119 = 0.83 798
798 = 1

Structure-overhead 1− 83
225 ≈ 0.63 1 1− 13

225 ≈ 0.94 1− 54
225 = 0.76

Expressiveness 1− 83
673 ≈ 0.88 0 1− 13

99 ≈ 0.87 1− 54
798 ≈ 0.93

Table 6. Experiment with |TC|= 4, and |CA∪PA∪AA|= 150.

The representational
from the cluster (T ′i ) 1 432 2 425 3 432 4 432

Used nodes
from AT 8 0 13 54

Total nodes in
T ′i (|C′i ∪P′i ∪A′i|)

673 29 119 798

The covered nodes
of T ′i

8 0 99 798

Accuracy 8
673 = 0.012 0 99

119 = 0.83 798
798 = 1

Structure-overhead 1− 8
150 ≈ 0.95 1 1− 13

150 ≈ 0.91 1− 54
150 = 0.64

Expressiveness 1− 8
8 = 0 0 1− 13

99 ≈ 0.87 1− 54
798 ≈ 0.93
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