
2
http://excel.fit.vutbr.cz

Behavior-Based Network Device Tracking
Michael Adam Polák*

Abstract
With the constantly growing number of devices on private and corporate networks, it is becoming
increasingly more important for network administrators to track devices based on their behavior with
limited feature availability due to the increasing security risks. This paper analyzes methods used
to create device profiles that are subsequently used to identify devices using frequency analysis and
the k-Nearest Neighbors algorithm with cosine similarity as the distance metric. Lastly, the results
of this method are presented with possible improvements to the existing algorithm.

Keywords: Network Device Identification — Frequency Analysis — k-Nearest Neighbors

Supplementary Material: N/A

*xpolak31@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

With the constantly growing number of devices that are
connected to the network, it is becoming increasingly
more important for network administrators to be able
to identify devices on the network. The root of this ne-
cessity lies in the escalating number of attacks that are
performed per day. Therefore, methods that identify
devices based on their behaviour are being developed
to identify and verify whether the behaviour of a de-
vice is similar to the already existent user profile, or
the device is malicious and the communication needs
to be blocked. The goal of this paper is to propose
an algorithm that provides administrators an automa-
tized method to track network devices on the networks
based on their behavior without the need of tracking
any additional information about the devices.

This work explores the current state of the art so-
lutions in Section 2 and proposes new approaches to
tracking network devices based on their behavior, with
better performance, using frequency analysis to cre-
ate device profiles and the k-Nearest Neighbors al-
gorithm with cosine similarity as the distance metric.
Device profiles are created based on the usernames
and source IP addresses, since MAC addresses that
would uniquely identify devices are rarely available
in a production environment. However, in the case of
this paper the MAC addresses are always available and
are used to measure the performance of the proposed

algorithm (e.g., MAC addresses are used as labels).
This combination of features (source IP address and
username) to create device profiles has been chosen
since it provides a very simple and effective way to
distinguish devices in a given time-window. However,
this combination of features is not sufficient to identify
a specific device, since a user can own multiple de-
vices and the source IP address of a given device may
change over time, therefore, behavior based device
tracking is necessary.

A further advantage of the proposed approach
to device identification is that compared to the methods
described in Section 2, it is not reliant on the availabil-
ity of all of the information, such as visited URLs,
and performs well even in the absence of these fea-
tures. The absence of features is pretty common since
network administrators have different goals with what
information they need to track and maintain, therefore,
robustness and the absence of the necessity to track
any additional information is a welcome improvement
compared to the existent methods.

2. State of the Art
In the past, methods such as HTTP or TLS finger-
printing have been used to reliably identify devices.
However, the constantly increasing network traffic
loads result in a significant increase of the size of
the databases. Furthermore, it becomes difficult to

http://excel.fit.vutbr.cz
mailto:xpolak31@fit.vutbr.cz


maintain these large databases up to date and accurate,
since the values of the fingerprints change over time
and these values need to be kept for each device and
visited website separately [1].

In addition, research that has been done up to this
point explores only methods that measure similarity
with previously seen behaviour [2]. Kumpost’s algo-
rithm achieves an overall accuracy of 78.3%, however,
has high spatial and time demands over large data-
sets, which renders these methods impractical in an
environment with many network devices. Another dis-
advantage of his approach is that the aforementioned
method works only on SSH traffic, where all of the
features are always available, which is rarely the case
in a production environment.

Another approach to tracking devices has been
proposed in the dissertation thesis of Kohno et al. [3]
using clock-skew to uniquely identify devices. Clock-
skew relies on the uniqueness of crystal frequencies
(deviations from the factory frequency are introduced
due to manufacturing tolerances) that computers use
to measure time, and measure the time measurement
deviation from a base device. Kohno et al. proposed
to estimate clock-skew by using the slope of the offset
points, which is the difference from the beginning
of the measurement (e.g., packet transmission) until
the observer receives the packet. They have shown
that the slope of the upper bound is similar to the
slopes of the offsets. This approach, however, often
requires synchronized sampling [4] to measure clock-
skew, which is an active method to tracking devices.

3. Proposed Approach

The goal of this work is to propose an algorithm that
will be accurate at identifying network devices and
have low time and spacial requirements. The first
Subsection 3.1 describes the proposed approach, and
the second Subsection 3.2 describes the data-set on
which the experiments are performed.

3.1 Proposed Algorithm
Before applying the algorithm to the data, it is neces-
sary to analyze the data-set in order to gain insight into
the behaviour and nature of the features. The analysis
revealed that it is possible to determine the duration
of the DHCP lease, and the websites visited by the de-
vices. Since the URLs often contain the path, queries
and ports which are unique to the specific request, they
are removed from the URL and only the domain is
extracted to reduce the dimensionality without the loss
of information provided by the URL.

Since the data-set contains tens of millions of

flows, it becomes computationally difficult to classify
each flow by itself. Therefore, it is necessary to ag-
gregate the flows into a profile that will be stored and
later compared to the current device behavior. As it is
necessary to aggregate multiple flows into one profile,
the nature of the data-set (and aggregated profiles) very
closely resembles written text.

One of the most common methods used to ana-
lyze text and compare similarity of texts is using fre-
quency analysis in combination with a similarity mea-
sure, such as Jaccart or cosine similarity. Due to the
resemblance of the aggregated flows to text, it enables
us to create profiles using frequency analysis for these
devices. Therefore, the exported data is separated into
5-minute segments and profiles are created based on
the usernames and source IP addresses, since MAC
addresses that would uniquely identify devices are
rarely available in a production environment. They are,
however, used as labels for the purposes of this paper.
This combination of features (source IP address and
username) to create device profiles has been chosen,
since it provides a very simple and effective way to
distinguish devices in a given time-window. However,
this combination of features is not sufficient to iden-
tify a specific device, since a user can own multiple
devices and the source IP address of a given device
may change over time.

Since some of the data might contain duplicates
of the same value but in a different context (such as
source and destination IP addresses), these features are
analyzed separately and then appended to the vector
containing frequencies of all of the features (an exam-
ple of flow aggregation based on source IP address
of a device can be seen Table 1 and Table 2). This
approach enables the creation of user profiles that are
memory efficient and accurate for the given 5-minute
window. Afterwards, it is possible to compare the simi-
larity of these vectors in any of the following 5-minute
time-frames.

Flow 1 Flow 2 Flow 3 Flow 4
User 1 User 1 User 1 User 1

src IP A src IP A src IP A src IP A
dst IP B dst IP B dst IP C dst IP D
port 1 port 1 port 1 port 2

google.com google.com - facebook.com
TLS 1 TLS 1 TLS 2 -

- HTTP f 1 - -

Table 1. Example of a 5-minute aggregated profile for
a device based on its source IP address.

The behaviour of users and devices can change
over time, therefore, the previously created profiles
need to be updated over time and the older profiles



Term Frequency
src IP A 4
dst IP B 2
dst IP C 1
dst IP D 1
port 1 3
port 2 1

google.com 2
facebook.com 1

TLS 1 2
TLS 2 1

HTTP f 1 1
- 5

Table 2. Example of frequency analysis including
only the features used in classification. The column
frequency represents the vector used in similarity
comparison.

need to be replaced by newer ones. Device users tend
to change the context of their work approximately
every hour, therefore, the number of 5-minute profiles
that are stored in the memory is limited to 12. If there
are 12 profiles, each time a device is classified as a
specific device, the oldest profile is deleted and the
current one is added into the profile pool. In the case
that there are less than 12 profiles, the newest profile
is directly added to the profile pool.

Since each of the devices has multiple profiles
created for it, it is possible to use the k-Nearest Neigh-
bors algorithm with cosine similarity as the distance
metric (defined by Equation 1 [5]) to find the nearest
behaviour profile for a given device. The value k has
been chosen to be 3, since less than 1% of devices have
communicated in only one 5-minute time-frame during
the initialization phase. The initialization phase con-
sists of profile creation in the first hour of the exported
data using the frequency analysis method described
earlier in this section. This approach, however, does
not account for the new devices that appeared later
than the first hour of the export. Therefore, flows that
contain a previously unseen username have a profile
created for that device. In the case when 2 of the 3
highest similarity values are below a threshold (set
to 0.9, value selection is described in Section 4), the
device is considered to be a new, previously unseen
device.

similarity = cos(θ) =
∑

n
i=1 AiBi√

∑
n
i=1 A2

i

√
∑

n
i=1 B2

i

(1)

Device profiles are stored in memory in the form
of cascading hash tables to improve searching effi-
ciency. The following Figure 1 describes the system

how device profiles are stored.

User 1
Device 1

[Profile 1, Profile 2, ...]
Device 2

[Profile 1, Profile 2]
User 2

Device 1
[Profile 1, ...]

...

Figure 1. Hierarchy describing the structure of
profiles stored in memory.

3.2 Data-set Description
Data-sets that are used for experiments of the pro-
posed algorithm are provided by Cisco Systems and
contain live data, therefore, the data-set itself cannot
be published. The data has been collected using a com-
bination of NetFlow, DNS queries and by using HTTP
and TLS fingerprinting methods. However, features
such as URLs, HTTP and TLS fingerprints are not al-
ways available, therefore, it is necessary to propose an
algorithm that is robust and can overcome the sparsity
of available data. The following features are available:
username, source IP address, destination IP address,
port, URL, HTTP fingerprint, TLS fingerprint, and the
MAC address. The subsequent Table 3 describes basic
information regarding the used data-set.

Total flows 64,806,407
Length of export [h] 16
Total users 7,385
Total devices 10,737
Total unique domains 53,226
Total unique TLS fingerprints 1,105,546
Total unique HTTP fingerprints 0
Availability of URL [%] 0.159
Availability of TLS fingerprint [%] 0.170
Availability of HTTP fingerprint [%] 0.0

Table 3. Basic information regarding the tested
data-set.

4. Experimental Results
Due to the collected data from the 16-hour period
missing values, it is first necessary to determine how
do the available or unavailable features influence the
accuracy of the proposed algorithm. Therefore, the
first experiment evaluates the accuracy of the algorithm
when the first hour is used for profile creation, and
the second hour for scoring the accuracy without the



detection of new devices, where k-NN is used with
k equal to 3. As it is always available, the source
IP address is used to aggregate data for the profile
in a given 5-minute period. Subsequently, the MAC
addresses are used as the labels to evaluate the accuracy
of the prediction. The following Table 4 describes the
accuracy of the algorithm. From the table it is possible
to come to the conclusion that even features that are
often not available, such as TLS or HTTP fingerprints,
improve the accuracy of the algorithm significantly.

Features Accuracy [%]
source IP, destination IP,

TLS fingerprint, HTTP fingerprint 93.65
port, domain

source IP, destination IP,
HTTP fingerprint 93.61

port, domain
source IP, destination IP,

TLS fingerprint 92.90
port, domain

source IP, destination IP, 13.22
port, domain

source IP, destination IP, port 0.0

Table 4. Results of the experiments evaluating the
accuracy, depending on the used features.

The following step was to verify that the cosine
similarity that is used as the distance metric creates
a gap in similarity values between devices with the
same and different MAC address. The following Fig-
ure 2 describes the distribution of values between the
same and different devices. The device pairs that have
been used for the comparison of similarity have been
chosen at random to get the best representation of the
distribution.

Figure 2. Histogram describing the distribution of
cosine similarities between device profiles with the
same MAC addresses (blue) and different MAC
addresses (red).

The mean for the similarity of devices with the
same MAC addresses is 0.98 and for devices with dif-
ferent MAC addresses the mean is 0.83. From this
graph it is possible to conclude that there is a gap be-
tween the values of similarity between devices with
the same and different MAC addresses, therefore, co-
sine similarity is the appropriate distance metric to be
used in device identification. The following Figure 3
describes the distribution of device profiles, and visual-
izes how the profiles create clusters. Due to the device
profile clustering, k-NN is an appropriate approach
towards solving the problem.

Figure 3. t-Distributed Stochastic Neighbor
Embedding (t-SNE) used to visualize how device
profiles are clustered. Each of the number labels
represents one device and each point is a device
profile.

Then, the effect of new device detection on accu-
racy needs to be evaluated. During this experiment the
first hour has been used to create the initial profiles, as
described in Section 3, and the effect of detection of
new devices over time is evaluated. A device is classi-
fied as a new device, when all of the nearest neighbor
distances are bellow the 0.9 threshold, chosen based
on the histogram in Figure 2. The Table 5 describes
the accuracy of the base algorithm. The following
Table 6 then describes the accuracy during the given
hour, without the replacement of old profiles.

Hour Accuracy Precision Recall F1
2 0.91304 0.88956 0.92931 0.89126
3 0.87210 0.84849 0.90754 0.84961
8 0.75068 0.72366 0.84124 0.72577

Table 5. Experimental results for the base algorithm
without device detection or profile updates, and its
accuracy over time.



Hour Accuracy Precision Recall F1
2 0.92779 0.89310 0.93256 0.89548
3 0.90626 0.85449 0.91313 0.85642
8 0.82190 0.73724 0.84763 0.73786

Table 6. Experimental results with new device
detection without profile updates, and its accuracy
over time.

Table 6 illustrates that the detection of new devices
using the methods described in Section 3 provides
a significant improvement in accuracy of the device
identification algorithm.

The last experiment evaluates the accuracy of the
proposed method when the algorithm is exchanging
the profiles for the newer ones after each classification.
This experiment also uses the concept of learning new
devices during the classification phase as described in
the previous experiment. The first hour is used for the
initial profile creation and the following hours of the
export are evaluated. The following Table 7 describes
the achieved results. Lastly, Figure 4 compares the
achieved accuracy of the aforementioned algorithms.

Hour Accuracy Precision Recall F1
2 0.92855 0.89815 0.93714 0.90031
3 0.90696 0.86116 0.91963 0.86295
4 0.88689 0.81799 0.89923 0.82030
5 0.87956 0.79107 0.88519 0.79327
6 0.86123 0.76723 0.87079 0.76893
7 0.84820 0.75270 0.86247 0.75451
8 0.83831 0.74328 0.85536 0.74492
9 0.83319 0.74001 0.85298 0.74167

Table 7. Accuracy and further metrics of the final
proposed algorithm with the addition of the sliding
window of profiles.

Figure 4. Comparison of all of the mentioned
algorithms and their achieved accuracy over time.

Overall the average accuracy of the proposed al-
gorithm is 89.26% over the tested 8 hour period. The

decrease in accuracy over time is caused by incor-
rectly classified profiles, which cause a skew towards
incorrect device classifications over the time period.
However, the decrease in accuracy appears to level out
at hour 9, which implies a consistent error rate in the
future predictions.

5. Conclusion
This paper describes the implementation of the net-
work device tracking algorithm using frequency analy-
sis and the k-Nearest Neighbors algorithm with cosine
similarity as the distance metric. The steps taken dur-
ing the development of the algorithm are explained,
along with the improvements over the previous version
of the algorithm. Generally, the algorithm has proven
to be effective over the tested 8 hour period, achieving
the average tracking accuracy of 89.26%. The pro-
posed algorithm provides a significant improvement
compared to the currently used tracking methods, such
as the method proposed by Kumpost achieving the ac-
curacy at 78.3%. Furthermore, the proposed approach
does not require any active querying, as clock-skew
does, and proves to be an effective approach to pas-
sively track devices.

The only downfall of the algorithm is the limited
ability to detect new devices based on their similarity.
Therefore, algorithms such as outlier detection should
be explored further to improve the accuracy of the
proposed approach.

Acknowledgements

I would like to sincerely thank my supervisor Ing. Li-
bor Polčák, Ph.D. for his valuable advice and guid-
ance. Furthermore, I would like to thank Mgr. Jan
Kohout and Cisco Systems for their advice and pa-
tience throughout the development of the algorithm.

References
[1] Blake Anderson. Tls fingerprinting

in the real world, April 2019. On-
line; visited 3.4. 2020. Available at:
https://blogs.cisco.com/security/
tls-fingerprinting-in-the-real-world.

[2] Marek Kumpošt. Context information and user
profiling. Masaryk University, Faculty of Informat-
ics. Supervisor Vašek Matyáš, Brno, 2009. PhD
thesis.

[3] Tadayoshi Kohno, Andre Broido, and K.C. Claffy.
Remote Physical Device Fingerprinting. IEEE,
2005. ISSN 1545-5971.

https://blogs.cisco.com/security/tls-fingerprinting-in-the-real-world
https://blogs.cisco.com/security/tls-fingerprinting-in-the-real-world


[4] Steven J. Murdoch. Hot or not: Revealing hid-
den services by their clock skew. Computer and
Communications Security, pages 27–36, 2006.

[5] Jun Ye. Cosine similarity measures for intuitionis-
tic fuzzy sets and their applications. Mathemati-
cal and Computer Modelling, pages 91–97, 2011.
ISSN: 0895-7177.


	Introduction
	State of the Art
	Proposed Approach
	Experimental Results
	Conclusion
	References

