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Abstract

Frama-C is a platform for static analysis of source codes written in the C language. It provides
a wide range of analysers usually based on EVA — Frama-C’s value analysis plugin. Despite some
attempts to support analysis of multi-threaded code have been done in Frama-C, the whole platform
is currently limited to analysis of sequential code only. In this paper, we present Deadlock, a new
plugin of Frama-C focused on deadlock detection. Together with the core algorithm of deadlock
detection, we present a technique our analyser uses to handle multi-threaded code partially as
a sequential one, which allows us to improve the precision of our analysis by using existing plugins
of Frama-C. In our experimental evaluation, we show that our tool is able to handle real-world
C code with a high precision.
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Listing 1. A simple C program with a deadlock

. . between threads threadl and thread?2
In a majority of concurrent programs, some kind of

N . 1 void f() {

synchronisation is necessary to guarantee consistency
i . K 2 pthread_mutex_lock (&mutexl);

of data. However, incorrectly used synchronisation 5 if (...
mechanisms may lead to another class of concurrency 4 pthread_mutex_unlock (¢mutexl) ;
issues, like, for example, deadlocks. In this work, 5 '}
we focus on deadlocks caused by incorrect usage of 6 .
locks. Tow-level hronisat; f d7V°ldg(){
ocks, low-level synchronisation primitives, often use g pthread_mutex_lock (&mutexl);

in the C language. In this particular case, a deadlock ¢ pthread_mutex_lock (smutex2) ;
is defined as a situation where each thread from some 10 }

set is holding a lock and waiting for another lock, that i 14 sthreadl (void sv) |
. . vol * rea vol *V
is held by (possibly the same) thread from the set. An |, pthread mutex lock (smutex2);

example of a simple deadlock is given in Listing 1. 14 £0);
Our implementation of deadlock detection is in- 15 '}

spired by the tool RacerX [1] and the deadlock analysis 15 id «thread? (void v) {
vol * rea vol *V
implemented in the CPROVER framework [2]. While 18 g0 ;

RacerX is explicitly designed to handle large code 19
bases and therefore does not do any pointer analysis
and resigns on soundness, CPROVER tries to be sound,
which leads to its slow running times as well as a lot
of false positives. Our goal is to design an analyser
that combines both presented solutions, i.e., can use
the existing pointer analysis available in Frama-C, but
with the stress put on detection of likely deadlocks
rather than soundness.

Another deadlock detection approach for low-level
C programs is implemented in the L2D2 (Low-Level
Deadlock Detector) plugin [3] of Facebook Infer. It
uses a completely different method — an incremental
and compositional analysis based on analysing each
function without its calling context. While this ap-
proach promises to be more scalable, it can also in
principle produce more false alarms.
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We also note that there exist many more static dead-
lock analysers, but many of them target higher-level
languages (such as Java or C++) or are much more
heavyweight. A discussion of such tools is beyond the
scope of this paper.

Frama-C is an open-source platform for static anal-
ysis of source codes written in the C programming
language. Frama-C has a modular, plugin-based archi-
tecture. Out of the existing plugins, the most heavily
used is the EVA (Evolved Value Analysis) plugin [4],
which computes an over-approximation of sets of pos-
sible values of variables at each program point. Its
results can be used for proving the absence of generic
errors or assertions written in a specialised assertion
language. They also serve as the input for other plugins
implementing, for example, program slicing, various
code optimisations, or test-input generation. There
are also plugins for deductive verification, which are,
however not relevant in the context of this paper.
Only sequential code can be analysed by the cur-
rent version of EVA and consequently by all plugins
based on it. As we have already mentioned in the in-
troduction, some attempts to implement analysis of
concurrent code have been done in Frama-C, but they
were rather experimental and are no longer under ac-
tive development. Examples of such attempts include
the Mthread plugin [5] focused on data race detection,
whose source code is unfortunately proprietary, and
Conc2Seq [6] for translating concurrent code and its
specification into sequential code simulating the orig-
inal code and checking the given specification. This
process is limited only for a subset of the C language.

Our analysis runs in two phases. In the first phase, we
compute possible initial states of different threads (in-
cluding information about which thread can be started
at all). In the second phase, we perform a lockset anal-
ysis in which we analyse each thread as a sequential
program assuming that it is started from the computed
initial state. Here, note that we use the term thread as
an abstraction representing all threads (instances that
could be created during execution of a program) with
the same entry point (and hence the same control).

In this section, we concentrate on the first phase
of the analysis, namely, the computation of which
threads can be created and with which initial states in
terms of possible values of global variables and val-
ues of arguments passed to threads. The main idea
is to use a fixpoint algorithm that runs as long as

Algorithm 1: Computation of initial states
of threads
Input: create_stmts ... statements where
threads can be created

1 function build_graph(threads)

2 G = empty_graph()

3 foreach ¢ € threads,s € create_stmts do
4 set_active_thread(t)
5 if is_reachable_by_thread(s,t) then
6 children = get_threads(s)
7 foreach child € children do
8 G.add_edge(t, s, child)
9 end

10 end

11 end

12 return G

13

14 function analyse_threads()

15 i=0

16 | G°=build_graph({main})

17 do

18 i=i+1

19 G = compute_fixpoint(G'~!)

20 threads = G .get_nodes()

21 G' = build_graph(threads)

2 | whileG #G

23 | return G’

new threads are discovered. Each iteration of this
fixpoint computation employing a nested fixpoint com-
putation that iterates over so-far known threads, anal-
yses them through EVA, and propagate information
between them through thread creation statements only.
This way, the possibility of creating new threads may
be discovered. These threads will then be analysed
in another iteration of the outer loop. Note that this
approach under-approximates the real behaviour of the
threads since no thread interleaving is considered. This
is a design decision which we have done for the sake
of efficiency of our analysis. While the analysis can
indeed under-approximate the real behaviour, in the
second phase, we are mainly interested in the parame-
ters of lock/unlock functions, i.e., identifiers of locks,
which are usually not that much influenced by thread
interleaving in practice.

Our method of computing initial states is formalised
in Algorithm 1. The function build_graph is used
to construct a graph encoding which thread can cre-
ate which other threads through which thread-create
statements based on the current approximation of the



possible initial states of the threads. The function
set_active_thread (line 4) is implemented as a
wrapper over EVA and used to set its context according
the so-far computed initial states of the given thread.
For each create statement that is found reachable by
EVA from the initial state of the thread being exam-
ined, we use EVA to find threads it can create and add
corresponding edges to the graph.

The function analyse_threads first builds a
graph based only on the initial state of the main thread,
containing every thread that can be created from the
main. Once new initial states are computed, new
graphs are iteratively computed on line 21. To up-
date initial states of the threads, we propagate states of
their parents in the create statements (line 19). To han-
dle programs with nested or even cyclic dependencies
between threads, we compute a fixpoint of a func-
tion propagating states over the graph. The fixpoint
computation over the graph is implemented using the
OCamlgraph library'. For programs where threads are
created in the main thread only, one iteration of the
loop between lines 17 and 22 suffices. However, for
more complex programs where the computation of the
initial states leads to discovering new threads or depen-
dencies, more iterations of the loop are necessary — we
loop until the computed graphs stop changing.

We illustrate the algorithm on the program from
Listing 2. It starts with the set create_stmt containing
stmt6 and stmt16. First, we compute G’ using the
build_graph function. Since only stmz16 is reach-
able from the main thread, a graph with the single

edge main Smt16, thread1 will be returned. The fix-
point computation over this graph is trivial — the state
of main at stmt16 is propagated as the initial state of
threadl. Afterwards, we check whether a new thread
can be discovered based on new initial states. We
find that thread? can be created from threadl and add
the corresponding edge threadl SO thread? to the
graph. The initial state of thread2 is computed analo-
gously. Since there is no other thread, we return the
initial states computed as follows (thread arguments
are ignored):

threadl : {i — {0}}, thread2 : {i— {1}}
Note that the incrementation on line 17 is not re-

flected in the initial states of thread1 and thread?2 be-
cause it is done after the thread creation.

Mttp://ocamlgraph.lri.fr/index.en.html

Listing 2. A program with nested threads (interfaces
of thread-create functions are simplified)

1 int i = 0;

2

3 wvoid xthreadl (void xv) {

4 i++;

5 pthread_t t;

6 pthread_create (&t, thread2);
7 return NULL;

8 1}

9

10 void xthread2 (woid =*v) {

11 return NULL;

12 }

13

14 int main() {

15 pthread_t t;

16 pthread_create (&t, threadl);
17 i++;

18 return O;

19 }

The key part of our analyser is a lockset analysis in-
spired by the tool RacerX [1]. In RacerX, however, no
pointer analysis is used, and so we had to extend its
methods for this purpose. The term lockset refers to
a set of locks that a thread holds at a particular pro-
gram point. The result of the lockset analysis is the
set of possible locksets for each program statement.
Based on this information, we can construct a lock-
order graph (further referred to simply as a lockgraph).
An edge a — b in the lockgraph indicates that some
thread tries to acquire lock b while already holding
lock a.

Our lockset analysis is performed for each thread
detected in the previous phase by a depth-first traversal
of its control flow graph. The traversal is implemented
as path-insensitive, i.e., all conditions are resolved
non-deterministically. The analysis is started with the
empty lockset, which is modified by the locking and
unlocking operations according to the transfer function
defined as follows ([[p]] denotes the set of possible
values of the variable p):

{Is U {l} |l €[p]} if stmtislock(p)
{ls \ {l}|1€[p]} ifstmt isunlock(p)

{is}

In the transfer function, the evaluation of the pa-
rameters (identifiers of locks) ignores the calling con-
text in order to facilitate usage of summaries computed
as described in Section 4.1. After applying the transfer
function, the analysis is forked for each pair consisting
of a successor statement and possible lockset.

Lstmt (ls) =
otherwise
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Let us consider the following pseudocode as an
example:

£() A // entry lockset = {}
lock (p) ; /7 p]] = {ml,m2}
unlock (p); // [p]] ={ml,m2}

}

Applying the transfer function on the first statement
results into the set of locksets {{m1},{m2}}. The rest
of the function is then analysed separately for {m1}
and {m2}. In both cases, after applying the transfer
function on the second statement, we assume that both
m1 as well as m2 can be unlocked despite the fact that
one of them was not locked. In other words, we over-
approximate the real behaviour considering all combi-
nations of locking and unlocking in such a case. The
exit set of locksets of f will then be {{m1},{m2}}.

4.1 Function Summaries

Function summaries are an efficient way to speed up
interprocedural analysis. In our analysis, function sum-
maries are represented by a mapping from pairs (func-
tion, entry lockset) to a set of exit locksets. The inter-
pretation is the following: if the function is called with
the entry lockset, the result is the union of the sets of
locksets at each of its exit points. For example, the
analysis of the function f from Listing 1 called from
line 14 with the entry lockset containing mutex2 will
produce the following summary:

{(f,{mutex2}) — {{mutex1,mutex2}, {mutex2}}}

Since the evaluation of the locks used is done re-
gardless of the calling context, f will produce the same
result at every other call site with the given entry lock-
set. In theory, each function could be analysed with
each possible lockset, which means up to 2" times
where 7 is the number of locks used in the program.
However, functions in real programs usually release all
locks they acquired, and if the pointer analysis is not
too imprecise, only small locksets are created. This
implies that the majority of functions are not analysed
many times. Our experiments described in Section 5
show that for a subset of programs where we detected
some locking operations, functions are on average anal-
ysed 1.89 times only.

4.2 Lockgraph Construction

When updating the locksets, whenever a lock / is added
to a nonempty lockset /s, a set of edges is added to
the lockgraph. The set is computed as /s x {I}. To
track information of the origin of the edge, each edge
is labelled by a set of traces. These traces are created

by concatenating call stacks that lead to locking both
of the locks as described in Section 4.5. The final step
is to check whether there are cycles in the resulting
graph, denoting possible deadlocks.

In this step, so-called self-deadlocks, i.e., dead-
locks caused by a single thread on a single lock are
ignored by default because they could lead to many
false positives.

4.3 Context Sensitivity

The context insensitive evaluation of locking param-
eters may cause significant imprecision when wrap-
pers of locking functions are used. An example of
such a situation is given in Listing 3. Without context-
sensitivity, the evaluation of the variable m on line 2
will always be the set of all mutexes used in the pro-
gram. As a result, the analyser will assume that func-
tion lock_wrapper can lock any mutex. Then, on
line 7, besides the real dependency mutex! — mutex2,
the dependency mutex2 — mutex] will also be created.
Generally, such a situation results in a graph containing
all possible edges.

For that reason, we allow such wrapper functions
to be analysed in a different way. Namely, during the
analysis of such functions, the call stack is taken into
account when evaluating variables. A disadvantage
is that we can no longer use summaries as described
in Section 4.1 for such functions. A list of wrapper
functions can be provided by the user of the analysis,
but we also try to detect them automatically. To iden-
tify them, we check parameters of all functions, and
if any of them is either a type representing a lock or
a structure containing (possibly recursively) a lock, we
mark the function as context-sensitive.

Listing 3. An example of a lock wrapper

void lock_wrapper (pthread_mutex_t xm) {
pthread_mutex_lock (m);

}

lock_wrapper (&mutexl) ;

1

2

3

4

5 void *thread (wvoid =*v) {

6

7 lock_wrapper (&mutex?2) ;
8

}

4.4 Concurrency Checking

To reduce false positives, we check if all edges in-
volved in a detected cycle are concurrent. That is not
the case when, for example, both edges of the cycle
were created in the main thread or generally in a thread
that is not created multiple times. Two threads can
also be non-concurrent if the first one is always joined
before the second one is created. Checking the first



condition is simple; to decide the second one, we use
a graph traversing algorithm that checks whether the
first thread is always joined before the second one is
created (this excludes deadlocks between threads that
can never run simultaneously). Another situation that
we currently do not take into account, results from
using of the so-called gatelocks. This situation hap-
pens when both dependencies are created in a critical
section protected by a common lock and therefore they
cannot be reached simultaneously during the execution
of the program.

Even though a cyclic dependency does not lead to
a deadlock, such a situation still can be considered as
a violation of a lock discipline, which may introduce
a deadlock in the future, and is therefore reported as
a warning of a lower severity.

4.5 Deadlock Reporting

To be useful in practice, the analyser should be able to
provide the user with information that helps him/her
to understand the reported issue. Since we do forward
traversal and analyse each program path separately, we
can easily report a trace of each dependency involved
in a cycle and hence a potential deadlock. A trace of
the dependency is created by concatenating call stacks
of points where the involved locks were acquired. To
make the report more succinct, the common prefix is
reported only once. A deadlock report for the program
in Listing 1 could then look as follows:

==== Lockgraph:

mutexl -> mutex2
mutex2 —> mutexl
==== Results:

Deadlock between threads threadl and thread2:

Trace of dependency (mutex2 —-> mutexl):

In thread threadl:
Lock of mutex2 (simple_deadlock.c:13)
Call of f (simple_deadlock.c:14)
Lock of mutexl (simple_deadlock.c:2)

Trace of dependency (mutexl —-> mutex2):

In thread thread2:
Call of g (simple_deadlock.c:18)
Lock of mutexl (simple_deadlock.c:8)
Lock of mutex2 (simple_deadlock.c:9)

4.6 A Heuristic Avoiding EVA

When analysing complex programs using Frama-C and
EVA, one usually needs to tune their input parameters
to achieve both precision and a reasonable running
time. After reporting some classes of alarms, EVA
will consider the rest of the code unreachable, and
the user must first solve the issue (either by fixing
the code, changing parameters of Frama-C/EVA, or

providing models for external functions). To provide
a fully-automated alternative, we implemented a so-
far experimental method that completely avoids using
EVA and uses purely syntactic information to identify
locks and threads.

The workflow of the analyser remains the same,
only the implementation of queries to EVA in the wrap-
per over it differs. Instead of the value analysis, we use
functions of the Frama-C API to extract information
which variables are contained in expressions. This is
sufficient when only references to global variables are
used. If this is not the case, which happens, e.g., for
locks that are members of structures frequently passed
among functions, the method can lead to both under-
and over-approximation. In the case of threads, we
also need to find their entry point functions. If this
is not possible, we assume that every function with
a POSIX threads signature (void * f (void *)) can be
an entry point of a given thread. For other queries to
EVA (mainly related to computation of initial states
of threads), top values of the abstract domains corre-
sponding to any possible value are returned.

We have evaluated our analyser on the benchmark
originally used in [2]”. The benchmark contains 993
programs that are considered to be deadlock-free and
8 programs with deadlocks, which were introduced
by the authors of the benchmark. All programs are
from the Debian GNU/Linux distribution and use the
POSIX thread API. Out of the benchmarks, we could
unfortunately use a subset only. A huge fraction of
the benchmarks was rejected by Frama-C due to type
errors (probably caused by a preprocessing done for
the CPROVER tool). Moreover, some of the test cases
contain locking operations in non-reachable code only.
We compare results our tool achieved on the rest of
them with those obtained by CPROVER and L2D2.
The experiments with our tool were conducted on
a machine with 2.5GHz Intel Core i5-7300HQ pro-
cessor and 16 GB RAM, running Ubuntu 18.04. To
overcome problems with parametrisation described in
Section 4.6, we tried to analyse each program using
several combinations of parameters to suppress some
errors reported by EVA that stop the analysis. However,
this leads in some cases to a slow running time and to
timeouts before our deadlock analysis even started.
Programs with deadlocks. When using value
analysis, our tool detected deadlocks in all 8 cases
that actually contain a deadlock. Both L2D2 and

2http://www.cprover.org/
deadlock-detection
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Figure 1. The time needed for the analysis (timeouts after 60 seconds are marked by the red colour)

Table 1. Experimental results on 278 deadlock-free
test cases that Deadlock can handle with value
analysis

correct | false positives | no result
Deadlock | 181 9 88
L2D2 259 11 8
CPROVER| 82 40 156

CPROVER manage to detect them too. Our light-
weight version missed one deadlock in a program that
uses lock wrappers. This is due to this approach, unlike
the solution described in Section 4.3, will see a single
lock represented by the formal parameter of the lock
wrapper function only, and hence it will not create any
locking edge.

Deadlock-free programs. Tables | and 2 presents
results that our tool with and without using EVA, re-
spectively, achieved on deadlock-free programs that
Frama-C could handle and their comparison with re-
sults of CPROVER and L2D2. The different numbers
of test cases considered in the two tables are caused by
the fact that an incorrect parametrisation can lead to
considering some locking or thread-creating operations
to be unreachable as described at the beginning of this
section. The column no result includes cases where
(a) our tool hit a timeout, (b) CPROVER timeouted
or ran out of memory, and (c) L2D2 hit a compilation
error.

Figure 1 shows how the running time of our tool
grows with the number of lines of code of the pro-
grams being analysed when used with and without
EVA, respectively. The left part of the graph devoted
to the analysis with EVA shows the importance of
choosing the right values of parameters of Frama-C
and EVA: programs are either analysed quickly (often
close to cases when no value analysis is done) or the
analysis times out. Note that during the evaluation of

Table 2. Experimental results on 393 deadlock-free
test cases that Deadlock can handle without value
analysis

correct | false positives | no result
Deadlock | 357 35 1
L2D2 359 25 9
CPROVER| 114 45 234

CPROVER much higher limits were used: a timeout
of 30 minutes and 24 GB of memory.

Further, to verify basic correctness of methods
presented throughout the paper, we also prepared a set
of crafted programs. These programs are available in
the project repository”.

We presented a design of Deadlock, a new Frama-C
plugin for deadlock detection. The experiments show
that it is able to handle real-world C code. However,
in some cases, we are limited by the pointer analysis
of Frama-C that we use for lock representation. Fur-
ther work could concentrate on improving precision of
method used when value analysis is too demanding.

We are currently also working on a data race detec-
tor using a part of our deadlock analysis. Our lockset
analysis can be used for checking whether memory
accesses to shared variables are protected by locks.
In order to do this, some parametrisation needs to be
done, because in contrast with deadlocks we need to be
more conservative when adding locks to a lockset — an
invalid lock generated at the beginning of the analysis
would “hide” all following possible races. Differenti-
ating between may- and must- locksets is a possible
way to achieve this.

3https://github.com/TDacik/Deadlock/tree/
master/tests
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