#14 Speech Enhancement with Cycle-

Consistent Neural Networks

Motivation Cycle-Consistent Neural Network

Noise in speech recordings reduces the effectiveness of
Automatic Speech Recognition (ASR) systems

e Uses a second neural network with the opposite goal
during training

e State-of-the-art speech enhancement systems use
neural networks to remove noise

e First, the noisy speech signal is enhanced using a

neural network
e Neural network models can further be strengthened by

employing cycle-consistency constraint

e Then, then noise is inserted back to that enhanced
speech signal using the second network (forward
cycle-consistency) or vice versa (backward cycle-
consistency)

e The networks are pre-trained separately

e After initialization, they are trained simultaneously
with the use of cycle- @ ( ) @
consistency losses .
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Cycle-Consistent GAN Results
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input-label pairs

e Generative Adversarial Networks (GANs) can be used to
train model with unpaired data

e We coupled GAN with cycle-consistency and identity- Acoustic model re-training

mapping constraints for adversarial speech enhancement

e \We further re-trained acoustic models
with data enhanced using trained models
to obtain even better results
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