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Abstract
Many state-of-the-art results in different machine learning areas are presented on day-to-day basis.
By adjusting these systems to perform perfectly on a specific subset of the general data, huge
improvements may be achieved in their resulting accuracy. Usage of domain adaptation in automatic
speech recognition can bring us to production level models capable of transcribing difficult and
noisy customer conversations way more accurately than the general models trained on all kinds
of language and speech data. In this work I present 12.7% word error rate improvement in our
speech recognition task over the general domain speech recognizer from Google. The improvement
was achieved by both very precise annotation and preparation of domain data and by combining
state-of-the-art architectures and algorithms. The described system was successfully integrated
into a production environment of the Parrot transcription company founded by, among other team
members, current and former faculty students, which drastically increased performance of the
human transcribers.
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1. Introduction

Automatic speech recognition (ASR) has achieved
many improvements over the last decade, similarly
to other machine learning areas. New algorithms and
more computational power allowed researchers to feed
the systems with much more data than before, which
markedly boosted results and accuracies of such sys-
tems. As a result, machine learning products can be
now applied in various day-to-day scenarios where
they automate the previously used manual processes
and save both time and money of companies using
them.

Automatic speech recognition is a system capa-
ble of transcribing speech from audio signal form to

text. In Parrot, a court reporting transcription com-
pany, we integrate automatic speech recognition as a
helper tool for our human transcribers. After obtaining
a transcription request from a customer and generating
the automatic transcription, the human transcribers fix
errors in the ASR output using a specialised editor
tool which is way more efficient than transcribing the
whole recordings from scratch manually. To improve
experience and efficiency of the human transcribers
even more, we decided to build a more accurate auto-
matic speech recognition system. As until now we’ve
been using a general speech recognition, I show in this
paper that a domain specific system can outperform
the general one in terms of word error rate (WER).
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The main reason for this being possible is no need of
transcribing all kinds of target domains, acoustic se-
tups and specific language dialects. Instead, we focus
only on scenarios that occur commonly in our use case.
Although this way our model performs worse in gen-
eral, it performs way better on our target data where it
knows the data well as it was trained on similar ones.

The goal of this work was to achieve higher tran-
scription accuracy on our legal based audio conversa-
tions than the one obtained with the general domain
model. This was accomplished by very precise data
selection, annotation and preparation followed by the
state-of-the-art language and acoustic models. Pre-
cise manual transcriptions cleaning, robust text nor-
malization of unlabeled data, various audio augmen-
tations, speaker adaptations, recurrent neural network
language models and time-delayed neural architectures
resulted in an ASR system with more than 12.7% im-
provement in WER in comparison to a general ASR
model developed by Google1.

2. Automatic speech recognition sys-
tems

To solve the large vocabulary continuous speech recog-
nition (LVCSR) [1] problem, ASR systems stand on
complex architectures composed of several subsys-
tems. Specifically, acoustic and languages models
combined together in a decoding network as depicted
in Figure 1.

Figure 1. Components of an automatic speech
recognition system transcribing a speech signal to text
(figure obtained from [2]).

Acoustic models (AM) are trained to match every
word in a speech signal to a sequence of acoustic units
called phonemes. To do this, Hidden Markov models
(HMM) [3] are one of the state-of-the-art approaches
to solve this sub-problem. To simulate the human
perception of speech where context plays an important
role, language models (LM) predict probabilities of
word sequences in a given language. The acoustic and
language model combination can be expressed in a
form of the Bayesian rule shown in Equation 1, where
P(X |W ) is modeled by an acoustic model (probability

1https://cloud.google.com/speech-to-text/

of the acoustic observation X given the word sequence
W ), while a language model estimates and models the
second part of the rule P(W ) (apriori probability of a
word sequence W ). Assuming P(X) is the same for all
possible transcriptions, we do not have to consider it
and only the numerator part of the rule remains to be
realised by an ASR system.

W ∗ = argmaxw P(W |X) = argmaxw
P(X |W )P(W )

P(X)
(1)

Acoustic models
Current state-of-the-art approaches in HMM states rep-
resentation use deep neural networks (DNN) [4] which
replaced the previously used Gaussian Mixture Models
(GMMs). However, GMMs are still found useful as a
preprocessing step before the neural net training. As
mentioned in [5], they help to force align phonemes in
the individual speech utterances before sending them
into an actual neural network based model.

The accuracy of a DNN during the training is ap-
proximated by an objective function. A basic objec-
tive function commonly used for a 1-of-K classifica-
tion problem is the multi-class cross-entropy (CE).
However, later studies proved that replacing the cross-
entropy objective function with sequence-discriminative
criteria (e.g. maximum mutual information (MMI))
improves the overall results in the automatic speech
recognition task as it is a sequence classification prob-
lem [6]. Further on, usage of lattice-free version
of the MMI objective function (LF-MMI) decreases
the computational costs by omitting the need of pre-
computation of the lattices for all possible word se-
quences (only the reference word sequence lattices
remain) and avoiding the initial training with a CE
model to create a precise weights initialisation [5].

Due to dynamic nature of speech ASR systems
have to model temporal relationships between acoustic
events, while at the same time providing for invariance
under translation in time. To fight this, the time-delay
neural network (TDNN) architecture [7] takes a win-
dow of both past and future feature frames to recognise
a single phoneme. Additionally, as shown in Figure 2,
later studies showed that not all connections between
all frames are necessary, which significantly improves
performance and lowers the amount of computations
needed during training [8].

To further improve the prediction and generaliza-
tion abilities of acoustic models, different speaker
adaptations may be applied. i-vectors, low-dimensional
features capable of characterizing speakers, are often
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Figure 2. Pruned time-delay neural network as
presented in [8] computes with sub-sampling (red)
instead of using all connections (blue+red).

taken as additional input to an acoustic model besides
the main (mfcc) features [9].

Language models
Language models (LM) are applied to estimate word
sequences apriori probabilities in a given spoken lan-
guage (e.g. English). The most widely used statistical
language model is the n-gram LM. Its goal is to iden-
tify occurrence counts of sets of n, n-1, ..., 1 words in
a large text corpus. The n-gram model is then used
to predict n-th word given a n-1 long word sequence.
Additionally, techniques like Kneser-Ney smoothing
[10] were introduced to improve the original n-gram al-
gorithm. If multiple different domain text corpuses are
available, building separate domain-specific language
models for each corpus individually and applying an
interpolation technique to combine them into a sin-
gle language model optimised for the target use case
showed better performance in comparison to training
a single LM on a big mixed-text corpus [11].

To further increase the language modeling capaci-
ties, recurrent neural network (RNN) models come in
place. Although RNN language models (RNNLMs)
show better results in comparison to the n-gram mod-
els, because of the RNNLM theoretically infinite his-
tory input lengths, it is technically impossible to com-
pile them into a static decoding graph. Thus RNNLMs
are usually not directly used in the decoding. Instead,
lattice rescoring is a common approach to take the
advantage of the recurrent models in the decoding pro-
cess [12]. After a word lattice is generated from the
1st-pass decoding, it is then rescored with an RNNLM.

As a conjunction of acoustic and language mod-
elling, modelling inter-word silence probabilities proved
to consistently improve the overall accuracy of ASR
systems [13]. As an example, zero-silence is less likely
to follow the word White in “Gandalf the White said,”

than in “The White House said.”.

Kaldi - speech recognition toolkit
Kaldi2, introduced in [14], is a free open-source project
consisting of many utilities for different parts of ASR
pipelines from feature extraction, through GMM/DNN
based HHMs training and speaker adaptation tech-
niques, to decoding graphs and lattice rescoring algo-
rithms implementations. Besides the individual com-
ponents, algorithms and utilities, Kaldi also provides
multiple prearranged pipelines called recipes contain-
ing state-of-the-art setups on different generally known
speech datasets. Kaldi toolkit utilities were mostly
used in this project.

3. Conversational speech dataset prepa-
ration

The data used to train both language and acoustic mod-
els had to perfectly represent the target domain. The
accuracy of the data annotation had to meet high ex-
pectations. The whole training dataset for the acoustic
model was composed of two subsets - the real data
from the company customers (29 hours) and a dataset
of the U.S. Supreme Court public hearings transcrip-
tions3 (the whole dataset contains 7000 hours but only
a 500h subset was used in this project so far). Our tar-
get domain consisted of different audio quality types:

• Formal depositions - indoor environment, quiet
room, mostly clear speech, high-quality micro-
phone based on a table in front of the speakers.
• Witness statements - indoor environment, less

formal environment, more spontaneous and sen-
timental discussion, middle quality microphones.
• Different less frequently represented scenarios

- prison phone calls, police bodycams, street
conversations etc.

Manual annotation
Acoustic data annotation was performed in two steps.
First, the whole recordings (5-400 minutes long) were
transcribed in a way that suits the customer - with nu-
merical characters, abbreviations, punctuation etc. Cor-
rect speaker labels were assigned to individual speech
parts which segmented the audio into smaller speaker
segments. In the second step, the speaker segments
were automatically assigned with start/end timestamps
using the gentle4 force alignment tool. The timestamps

2https://kaldi-asr.org/
3https://www.supremecourt.gov/oral_

arguments
4https://github.com/lowerquality/gentle
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were thereafter manually corrected by human annota-
tors in a proprietary designed annotation tool. Besides
that, the human annotators were instructed to normal-
ize the original transcriptions to a fully verbatim form
(e.g. year 1950 replaced with 19 50 if pronounced as
”nineteen fifty” etc.).

Language model text corpuses
To train the language models (both n-gram and RNNLM),
different text corpuses were experimented with. Firstly,
the company transcriptions were used as one text cor-
pus (17k sentences). Secondly, the whole Supreme
Court hearings dataset transcriptions created the sec-
ond text corpus (4M sentences). The rest consisted of
general language text corpus (42M sentences subset of
Google Billion Word Benchmark [15]), a set of legal
deposition transcriptions collected on the Internet (3M
of conversational data) and a set of publicly available
court decisions5 (20M sentences of non-conversational
data).

Automatic data preprocessing
As only the company transcriptions were manually nor-
malized and transformed to the fully verbatim form,
automatic normalization had to take place for all texts
available. The normalization replaced all numerical
values and special characters like dollars and percents
with their alphabetical equivalents in an appropriate
way (’70s as seventies, $100,000 as one hundred thou-
sand dollars etc.). The letter case was processed only
at the sentence beginnings, the rest of words remained
with the original case; each word at a sentence begin-
ning was decided to remain capital or was lowercased
with help of a pretrained named entity recognition tool
spacy6. All punctuation was removed except in special
cases like hm-mm or uh-huh and single quotes (don’t).
Abbreviations were split into single letters and several
other minor preprocessing steps were performed.

Input text:
MMy name Bond, james bond. A CIA agent.

Ian Flaming introduced me in 1953 in a Casino
Royale novel, later filmed in 2006 for $10 mil-
lion.

Text after manual correction and partial nor-
malization:

My name is Bond, James Bond. A CIA
agent. Ian Flaming introduced me in 19 53 in
a Casino Royale novel, later filmed in 2006 for
$10 million.
5https://case.law/bulk
6https://spacy.io/

Text after automatic normalization:
my name is Bond James Bond a C I A agent

Ian Flaming introduced me in nineteen fifty
three in a Casino Royale novel later filmed in
two thousand six for ten million dollars

Due to the LF-MMI objective function sensitivity
to incorrect transcripts, the Supreme Court acoustic
data were cleaned from the utterances with supposedly
incorrect transcriptions. The cleaning was performed
using a kaldi script7. The script removed utterances
which, after decoding with a biased LM (trained on
the transcriptions themselves), the lattice oracle path
was still far from the transcript. This way, 12% of the
acoustic data was considered to be incorrect and thus
removed from the dataset. The removed utterances
often contained crosstalks or the audio was cut in the
middle of the utterance text.

Data augmentation
To increase the size of the company dataset and for the
Supreme Court data to better match the target acoustic
setup, all of the data underwent an augmentation pro-
cedure using speed perturbation and the room impulse
responses dataset described in [16] (RIR noises). In
the paper, 3-fold speed perturbation was used in all
experiments. Additionally, improvements of both 2
and 3-fold augmentations using RIR noises in addition
to speed perturbation were presented. As our company
dataset size was too small at the moment of training,
3-fold speed perturbation was applied to create dif-
ferent speed versions of the original data. Thereafter,
the amount of augmented data with RIR noises was
increased from 3 to 4-fold in comparison to the origi-
nal paper. Supreme Court dataset was doubled using
RIR noises. No speed perturbation took place as the
amount of the Supreme Court data was sufficient. All
mentioned augmentation procedures were performed
using appropriate kaldi scripts.

Additionally, all utterances were concatenated with
randomly selected 30ms silence audio chunks (30ms
to both start and end of an utterance) to prevent HMM
first and last silence representing states from assigning
speech phonemes to them, which would be the case
for utterances where there were no silence frames at
their beginnings and/or ends.

7https://github.com/kaldi-asr/kaldi/blob/
master/egs/wsj/s5/steps/cleanup/clean_and_
segment_data_nnet3.sh
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4. Experiments

Throughout the experiments, the company dataset was
split into an 11.5 hour test set and an 18 hour train
set, both with unique speakers. 500 hours were sepa-
rated from the U.S. Supreme Court dataset to increase
the train set size and another 60 hours Supreme Court
subset was created as a second test set. Both com-
pany and Supreme Court sets were augmented. The
company 18 hours were augmented to 220 hours using
4-fold RIR noises and 3-fold speed perturbation. The
Supreme Court data were augmented from 500 hours
to 990 hours using 2-fold RIR noises augmentation.
The separate improvements are described below.

Language models
Several LM experiments were performed to prove that
the interpolation of several narrow domain n-gram
LMs can outperform one large n-gram LM. First, four
different-domain 4-gram language models were trained
on the text corpuses described in Table 1. An open-
source tool KenLM8 was used to train the individual
LMs and the final interpolated LM.
Table 1. 4-gram language models tested on a subset
of 9k sentences of the company transcriptions not seen
during the training. Log-linear weights were assigned
by the interpolation procedure using the KenLM tool.

Dataset Size Weight Perplexity
General 42M 0.2 510

Legal general 23M 0.1 427
Supreme Court 4M 0.2 407

Parrot transcriptions 17k 0.5 146
Interpolated LM - - 126

In another experiment, the same text corpuses were
used differently. The out-of-domain corpus (Google
Billion Words) was not used at all. The Supreme Court
dataset was split into two subsets, transcriptions be-
fore and after the year 2000. Finally, the legal general
corpus was split into two subset, dataset of Court De-
cisions (non-conversational texts) and legal speech
transcriptions collected on the Internet (conversational
texts). Another difference in comparison to the previ-
ous LM experiment was improved text normalization
capable of correct handling of more specific use cases
than the previous normalization version. To sustain the
comparability of the test set, the original normalization
was applied on it in the second experiment.

Two different RNNLMs for lattice rescoring were
trained on the same data splits used by the n-gram
LMs. Their contributions are shown the tables 3 and 4.

8https://kheafield.com/code/kenlm/

Table 2. 4-gram language models tested on a subset
of 9k sentences of company transcriptions not seen
during the training. Log-linear weights were assigned
by the interpolation procedure. The text corpuses from
in Table 1 were differently divided and more robust
normalization was applied on them. The robust
normalization removed a big part of the Court
decisions corpus.

Dataset Size Weight Perplexity
Court decisions 15.5M 0.2 340

Legal transcriptions 2.5M 0.55 176
Supreme Court 1.5M -0.1 337
Supreme Court

from before 2000 2.5M -0.1 340

Parrot transcriptions 17k 0.45 139
Interpolated LM - - 123

Acoustic models
The acoustic model architecture was based on the kaldi
Switchboard recipe9. Firstly, a sequence of GMM
based models was trained, each of which used phoneme
level alignments from the previously trained GMM
model. Starting with a monophone training on a sub-
set of the shortest utterances (to minimize incorrect
phoneme alignments), continuing with bigger mod-
els trained on bigger subsets, ending with a triphone
GMM model with speaker adaptation, which thereafter
aligned the utterance phonemes before being passed
into the TDNN model.

Table 3. Convolutional time-delay (cnn-tdnnf) models
trained on the cleaned and augmented Supreme Court
dataset (s.c., 500h augmented to 990h) and 18 hours
of our company data. The 18 hours of Parrot data
were extended by augmentations to 220h. test1 is an
11.5 hour test set of the company data, test2 is a 60
hour subset of the Supreme Court dataset, both not
seen during the training.

Training info: WER [%]
AM LM Dataset test1 test2

google unknown unknown 35.0 -
cnn-tdnnf 4-gram 990h s.c. 38.3 13.8

cnn-tdnnf 4-gram
+ lat. rescoring 990h s.c. 34.9 15.1

cnn-tdnnf 4-gram
18h parrot

+ 200h aug.
+ 990h s.c.

27.63 13.96

cnn-tdnnf 4-gram
+ lat. rescoring

18h parrot
+ 200h aug.
+ 990h s.c.

24.21 -

9https://github.com/kaldi-asr/kaldi/tree/
master/egs/swbd
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Experiments with different data setups were run
which is demonstrated in the tables 3 and 4.

Table 4. Improved 4-gram language model from Table
2 and a new RNNLM trained on the newly normalized
corpuses from the same table used with the same AM
as in the Table 4. test1 is the company 11.5h test set
same as the test1 from Table 3. test3 is the same set
except with the improved text normalization.

Training info: WER [%]
AM LM Dataset test1 test3

google unknown unknown 35.0 35.1

cnn-tdnnf 4-gram (v2)
18h parrot

+ 200h aug.
+ 990h s.c.

24.65 24.42

cnn-tdnnf 4-gram (v2)
+ lat. rescoring

18h parrot
+ 200h aug.
+ 990h s.c.

22.59 22.32

The best WER was achieved by decoding with
the beam size 15, lattice pruning beam 12 and rescor-
ing lattice beam 12. Higher values resulted in around
0.01% improvement but drastically increased the com-
puting time thus the lower beam values seem to be the
most reasonable.

5. Conclusions
A combination of proven state-of-the-art automatic
speech recognition components was presented in this
work. The paper demonstrates how to prepare conver-
sational speech data from a specific domain to achieve
higher accuracy than a generic ASR model. With only
18 hours of the target domain data in combination with
a public similar domain dataset of 500 audio hours,
a 12.7% WER improvement was gained in compari-
son to a general ASR model from Google. The paper
shows how the individual components and data prepa-
ration steps help with increasing the resulting accuracy
of the system.

Improvements of several of the mentioned compo-
nents weren’t measured separately thus it’s not clear
how big contribution they brought. Such experiments
have to be run in the future. Also, no time was spent
to tune the hyper-parameters of the individual com-
ponents which can become an object of the future
research. Additionally, a bigger target domain dataset
could boost the final results even more.
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