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Counting Vehicles in Image and Video
Dominik Gabzdyl*

Abstract
Traffic analysis is still a challenging task. During such task there are many pitfalls to be aware
of. Such as small image resolution, high number of overlapping objects, angle of camera, blurred
objects due to their motion or weather conditions. This paper addresses the issue of counting
vehicles instances in images and videos. Remarkable results and state-of-the-art methods are
defined by convolutional neural networks. There are many approaches to address the issue of
counting objects in images. One of which is counting by regression, which is the aim of this paper. I
propose an architecture which is inspired by some state-of-the-art models. The proposed model
improves accuracy on various datasets. For instance on the very small PUCPR+ dataset the Root
Mean Square Error between expected and predicted vehicle counts was reduced from 34.46 to
8.84 vehicles (measured on the test set).
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1. Introduction
Before the rise of Artificial Intelligence, vehicle de-
tection task was carried out via hardware solutions.
Inductive loops [1] solution, for instance, is one of
them. Vehicle passing through such loop would cause
change in magnetic field thus signalizing its presence.
However such hardware solutions are costly. Recent
major rise in computer vision presented approaches
with high accuracy and low implementation cost.

In this paper I address the hard problem of pre-
cisely counting objects instances within an image (or
video). The correct detection of an object is severely
impacted by many factors. Some of which include
extremely overlapping objects, distorted image, bad
weather conditions, high density of objects, etc.

Data acquired from automated traffic flow analysis
can improve management of traffic. Busy highways
or road intersections can be monitored for traffic con-

gestions to see how they evolve. Public authorities
in charge of the maintenance and planning of road
infrastructures can make use of such information.

2. Related work
Counting by regression belongs to supervised learning
category. In supervised learning a ground truth (ex-
pected output) must be provided. One technique of the
counting by regression approach is to use heatmaps.
In this technique a pair of input image and its expected
output heatmap image is provided to model. The train-
ing phase of model is then basically learning mapping
between ground truth images and input images.

Following the idea of Lempitsky et al. [2] the
counting problem is then a process of recovering a
density function as a real function of pixels of input
images. Predicted heatmap patch of objects is the
output from a network of this approach. Expected
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heatmap patch is made by applying Gaussian blur with
a reasonable standard deviation value σ (in this work
σ = 15) centred on each dot in the annotated image.

However, this will get us a full ground truth image.
We need to split input images and ground truth images
into patches. Note that each input and ground truth
patch pair must have matching coordinates (their patch
coordinates must correspond).

Gaussian blur uses a kernel whose values add up
to 1. This ensures no energy is added or removed
from the image after this operation. Thus, the sum
of convolved dots (pixels) in the annotated image is
unchanged (the vehicle count is preserved). To get the
final count we simply sum up the density map.

In this section I will also discuss architectures
which inspired my work. I will provide a brief sum-
mary of each. I will also mention pros and cons where
possible.

2.1 Multi-column Deep Neural Networks for
Image Classification

This network architecture [3] is inspired by vertical
column-like arrays of neurons (located in the temporal
cortex of human).

The model is made of vertically stacked columns
to learn image features independently and in parallel.
Each column consists of the same combination of con-
volutions, pooling layers and fully connected layers.
An image gets a unique distortion/preprocessing be-
fore it is passed into a column. At the end all columns
are averaged and a final output is produced.

2.2 Counting CNN
One of the proposals of the paper Towards perspective-
free object counting with deep learning [4] is the
Counting CNN. The model falls into counting by re-
gression category, which is the category covered in
this paper. In the training phase 800 RGB patches are
randomly cropped with a fixed size from an input im-
age and are fed to the model. Augmentation strategy
is done by vertical flipping each patch making it 1,600
patches in total. They crop patches of size 72x72x3 and
18x18x1 patch is the direct output from their network.
The prediction is done via dense patch extraction and
the output patches are assembled together to generate
the final ground truth estimation. Counting CNN was
also trained on the TRANCOS dataset (see TRAN-
COS dataset) and reported an improved accuracy on
this dataset [4].

Their architecture is rather small than large (6 con-
volutional layers in total). This makes it relatively fast
to predict an output patch from the input one. If the

number of training patches is smaller, training will be
a lot faster with not so big accuracy impact.

2.3 Context-Aware Crowd Counting Network
Even if the Counting CNN tries to solve the perspec-
tive distortion by random patch extraction, its results
indicate severe inaccuracies since the scale continu-
ously varies across the whole image [5]. The Context-
Aware Crowd Counting Network (CAN) adaptively
encodes multi-level contextual information into fea-
tures it produces. They perform so-called Spatial pyra-
mid pooling [6]. Scale-aware features are computed
by average-pooling subtraction from the VGG-16 [7]
front-end. The front-end uses a method known as
transfer learning. This means pre-trained weights are
downloaded and used instead of initializing weights by
some distribution, thus significantly reducing the train-
ing time. CAN model downloads pre-trained weights
from the ImageNet dataset [8] and adjusts (trains) them
to fit a particular dataset. In the training phase input
image is divided into four regions of equal size (non-
overlapping). One of these four regions is randomly
chosen and passed to the net.

2.4 Pyramid Density-aware Attention Net for
Accurate Crowd Counting

A very recent architecture (January 2020) to the time
of writing my thesis [9]. PDANet continues to improve
the accuracy of the CAN model.

This model also makes use of VGG-16 front-end
for low-level feature extraction. Pyramid feature ex-
traction with spatial and channel attentions are attached
to the front-end to produce richer features. The model
distinguishes between images with sparse and dense
object instances. To distinguish between these two
a classification module is used which then decides
whether the image is either sparse or dense.

Within the decoder module there are two branches:
dense and sparse. The model is trained in a such way
that weights in the upper branch (dense) are adjusted
for dense features and the lower branch (non-dense)
is adjusted for sparse ones. At the end these branches
are combined together to produce the final density
estimation.

3. Proposed solution

The proposed architecture makes use of VGG-16 front-
end for low-level features extraction. The CAN and
PDANet use only first 10 layers of VGG-16 and so
does the proposed solution. The architecture is de-
picted in the Fig. 1. The front-end is then connected
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Figure 1. Proposed architecture. RGB patches are fed to the VGG-16 front-end network. Resulting low-level
features are weighted (neurons wi) and sent to dilated convolutions in parallel. Averaging followed by 1x1
convolving ends one such parallel layer. Dilated convolutions in parallel layers increase the receptive field of the
network and help to understand the overall picture. The last parallel layer gets additional 1x1 convolving and
produces density estimation. Input patch height and width dimensions are reduced by a factor of 8 due to two
max-pooling layers in the VGG-16 front-end.

Table 1. Dilated convolutions setup
Structure number Filter depth Dilatation rate

1. 256 4
2. 128 2
3. 64 1

to a tree-like structure, which is inspired by aforemen-
tioned Multi-column network.

One layer (structure) of the entire tree-like struc-
ture is composed as follows. Input to this layer gets
weighted n-times (where n is the number of parallel
conv layers within the corresponding structure). Each
weight wi represents one neuron, whose value is deter-
mined during the training phase. These weights use
Softmax activation functions. Initially the value of
each weight wi is set to an increasing multiple of 1/n.
So for example the last structure has the initial values
w7 = 1/6, w8 = 2/6, w9 = 3/6, w10 = 4/6, etc.

Each weight is connected to a dilated conv layer
(C2D white box in the Fig. 1). All dilated convolu-
tions use the same kernel size 3x3 but they differ in
dilatation rate and filter depth. The setup of these conv
layers is shown in the Table 1 (structure count starts
from the front-end).

Dilated convolutions are then averaged. Final 1x1
convolving ends one such structure. All convolutions
in each structure are followed by ReLU activation func-
tions.

The final structure gets additional 1x1 convolution
to produce a density estimation for a given input patch.

The weighting idea came from PDANet classi-
fier, which is responsible for giving each of the two
branches unique weights. Dilated convolutions in-
crease the receptive field of the network and help to un-

derstand the overall picture instead of finer details [10].
I have implemented this architecture in Keras frame-

work [11]. The model uses Mean Square Error (MSE)
loss and Adam optimizer to compute weights.

Training setup Input RGB patch extraction is done
via division of input image into four equal regions and
randomly picking one of them. This patch gets ran-
domly chosen combination of augmentation (zoom,
horizontal flipping, gamma change, gaussian noise ad-
dition). The front-end has 2 max-pooling layers, which
reduce input patch dimensions by a factor of 8. There-
fore, the corresponding ground truth patch needs to
be scaled down. Simply stretching or shrinking the
patch could change the count (hence patch normaliza-
tion is needed). In the Towards perspective-free object
counting with deep learning paper [4] a normaliza-
tion formula was proposed to solve such issue (see
Equation 1).

D̂P+
pred =

∑∀p DP
pred(p)

∑∀p D̂P
pred(p)

∗ D̂P
pred (1)

where:

• D̂P+
pred : is the rescaled density patch with a match-

ing count
• DP

pred: is the original (not rescaled) density
patch
• D̂P

pred: is the rescaled density patch without a
matching count
• p: is the pixel

Dense patch extraction is a chosen method to pro-
duce final density estimation (each patch is a quarter
of an image). Since patches are overlapping the final



Figure 2. Sample images from specified datasets.
Top row: TRANCOS Bottom left: PUCPR+
Bottom right: CARPK

density map must be normalized. Each position (pixel)
in the final density map is an average of patches that
cast a prediction in it.

4. Comparison with state of the art
The proposed architecture is trained and tested on the
following datasets. Each dataset will be introduced
and results achieved will be shown in tables. I will
compare official state-of-the-art results with my model.
All official state-of-the-art results are pulled from the
respective dataset web page. Tables with comparisons
are truncated to show only Top 5. Values in these tables
depict error rates between expected and predicted ve-
hicles counts measured on the corresponding test sets
(the lower the value the more precise the prediction
is).

4.1 TRANCOS dataset
A Spain car dataset [12]. TRANCOS is the acronym
for TRaffic ANd COngestionS. As the name suggests
the dataset focuses on traffic congestions. The dataset
was made by capturing traffic via selected real surveil-
lance cameras during three week period. The dataset
contains more than 1,200 images and 46,700 annotated
vehicles. These images are split in 3 sets as follows:

• Training - 403 images
• Validation - 420 images
• Test - 421 images

Since annotations are partial (not every vehicle is an-
notated), they used Region of Interest (ROI). Binary
masks are provided to make visible only the annotated
section of image (leaving non-ROI regions black). To
train a model we are given a choice between 2 meth-
ods: either train solely on training set or to train on
both training and validation sets (or as they call it -
’trainval’ set).
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Figure 3. GAME(L) metric visualization

TRANCOS uses its own metric to measure net-
work’s accuracy – the GAME(L) metric. GAME(L)
stands for Grid Average Mean Error and is required to
be used when reporting results of one’s model accu-
racy on this dataset. State-of-the-art results are shown
in the Table 2. The GAME(L) metric is formulated in
the Equation 2.

GAME(L) =
1
N
·

N

∑
n=1

 4L

∑
l=1

∣∣∣el
n−gt l

n

∣∣∣
 , (2)

where:

• N: is the total number of test images
• L: is the total levels number (max 4-regions

exponent)
• el

n: is the estimated count within region l of
image n
• gt l

n: is the ground truth count within region l of
image n

This metric takes into consideration vehicle lo-
calization error. The higher the L number the more
strict /precise localization error estimation is. I have
made a toy example for demonstration purposes (see
Fig. 3). In this figure there are red and green boxes
with numbers within a grid. Red boxes represent ex-
pected vehicles within a region, whilst green ones rep-
resent vehicles prediction within a region. TRANCOS
has matlab code for calculating this metric (publicly
available along with the dataset on their web page
[17]). I have rewritten this code from matlab to python
to get the GAME(L) evaluation of my model which is
written in Keras [11].



Table 2. Evaluation of state-of-the-art methods on dataset TRANCOS. Lower number is better.
Method GAME(0) GAME(1) GAME(2) GAME(3)

IbPRIA 2015 (HOG-2) [12] 13.29 18.05 23.65 28.41
IbPRIA 2015 (Fiaschi+RGB Norm+Filters) [12] 17.68 19.97 23.54 25.84

IbPRIA 2015 (Lempitsky+SIFT) [12] 13.76 16.72 20.72 24.36
Hydra CNN (ECCV2016) [4] 10.99 13.75 16.69 19.32

proposed model 3.08 4.29 5.97 7.95

Table 3. Evaluation of state-of-the-art methods on
dataset PUCPR+. Lower number is better.

Method MAE RMSE
YOLO [13] 156.00 200.42

Faster R-CNN [14] 111.40 149.35
One-Look Regression [15] 21.88 36.73

Layout Proposal Network [16] 22.76 34.46
proposed model 7.48 8.84

Table 4. Evaluation of state-of-the-art methods on
dataset CARPK. Lower number is better.

Method MAE RMSE
YOLO [13] 48.89 57.55

Faster R-CNN [14] 47.45 57.39
One-Look Regression [15] 59.46 66.84

Layout Proposal Network [16] 23.80 36.79
proposed model 15.62 18.43

4.2 PUCPR+ dataset
This dataset is a subset of the PKLot dataset [18]. As
per description the captures are taken at Pontifical
Catholic University of Parana (PUCPR), located in
Curitiba, Brazil. Images were taken from the 10th floor
of the administration building of the PUCPR. These
captures were taken during various weather conditions
such as sunny, overcast and rainy.

Originally, the PUCPR dataset (note the missing
’+’ sign) is annotated only partly (100/331 parking
spaces in a single image). Meng-Ru et al. [16] lo-
calized and completed missing annotations and called
it PUCPR+. In total of only 125 images with nearly
17,000 cars, the 25 of them are meant for model testing.
Such low number of images makes it a challenging task
to train a network. State-of-the-art results are shown in
the Table 3 (MAE and RMSE stand for Mean Absolute
Error and Root Mean Square Error respectively). The
dataset is available on the github [19].

4.3 CARPK dataset
Meng-Ru et al. proposed their own dataset and called
it CARPK [16]. CARPK provides large-scale images
taken from the drone point of view. The drone took im-
ages from four various parking lots. There are nearly
1,500 images with approximately 90,000 cars in total.
Drone addresses the problem of a bias created by a
fixed camera scene, where the point of view is con-
stant. Images annotations are done by bounding box
technique, where each vehicle gets upper left and bot-
tom right (x, y) coordinates representing the bounding
box. For the purpose of my regression approach this
bounding box annotation is converted to dot annotation
by taking a centre of the bounding box. State-of-the-
art results are shown in the Table 4 (MAE and RMSE
stand for Mean Absolute Error and Root Mean Square
Error respectively). As well as the PUCPR+ dataset

this one is also available on the github [19].

5. Conclusion

The paper presented a neural network architecture
for counting vehicles instances in images. Proposed
architecture is based on the VGG-16 front-end and
multi-column structures setup, which experimentally
improved current state-of-the-art results on datasets
mentioned in the Section 4. To summarize, the contri-
butions made in this paper are as follows.

Firstly, introduction of the new neural network
architecture for counting vehicles, which is inspired
by state-of-the-art architectures.

Secondly, evaluation of the architecture on vehicle
datasets and comparison with current state-of-the-art
architectures.

Lastly, further improvement of accuracy of state-
of-the-art results on vehicle datasets. Some of the
network predictions are shown in Figures: 4, 5, 6, 7.
However, there is still space for improvements and
possible further research in counting by regression
approach.

Acknowledgements

I would like to thank my supervisor Ing. Jakub Špaňhel
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