
2
http://excel.fit.vutbr.cz

Enticing – Semantic Search Engine
David Kozák*

Abstract
The topic of this paper is semantic searching over big textual data. It describes the design and
implementation of a search engine called Enticing that queries semantically enhanced documents
efficiently and has a user friendly interface for working with the results. First, state of the art solutions
along with their strengths and shortcomings are analyzed. Then a design for new search engine is
presented along with a specialized query language EQL. The system consists of components for
indexing and searching the documents, management server, compiler for the query language and
two clients, web based and command line. The engine has been successfully designed, developed
and deployed and is available via Internet. As a result of that, the possibility to use semantic
searching is available to a wide audience.

Keywords: search engine — semantic enhancement — MG4J — compiler — indexation —
searching — annotation — big data

Supplementary Material: Web Interface
*xkozak15@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
The topic of this paper is semantic searching over big
textual data. The Knowledge Technology Research
Group (KNOT)1 at FIT BUT has a Natural language
processing (NLP) pipeline which can analyse docu-
ments written in natural languages and add additional
meta information to them. Such information can be
syntactic, such as lemma of the word or its position
within sentences and paragraphs, or semantic, such
as entities like people and places. The output of this
pipeline is a big volume of textual data. It is already

1https://www.fit.vut.cz/research/group/knot/

a great piece of work on it’s own, but without the abil-
ity to query these semantically enhanced documents,
their usage is limited. The goal of this project is to
design and develop a search engine that would query
the documents efficiently while allowing to use all the
meta information in the queries. The engine will be
called Enticing.

A couple of search engines with support for seman-
tic search such as Mimir or Sketch Engine have been
implemented before. One such engine has even been
created internally within KNOT2. However, none of

2http://knot.fit.vutbr.cz/projects.html

http://excel.fit.vutbr.cz
http://athena10.fit.vutbr.cz:8080/
mailto:xkozak15@stud.fit.vutbr.cz

those matched the requirements for the new engine. Its
goal is to allow the user to query all the meta informa-
tion including entities with attributes and relationships
between them. At the same time, the queries should
be easy to read even for non-programmers. The en-
gines mentioned above either did not provide support
for entities with attributes or were way too complex
for our use case. The previous engine was an attempt
to create such a system, but unfortunately, it was not
written in a maintainable way, which made any further
extensions or bugfixes very time consuming. That’s
why the decision was made to create a new engine and
design it with stability and maintainability in mind.

In order to query the semantic metadata, a special
query language has to be used. As a part of this project,
such query language called EQL has been designed
and its compiler was integrated into the search engine
infrastructure.

The text is structured as follows. Basic definitions
and techniques used inside search engines are defined
in section 2. Semantic enhancement and semantic
search are introduced in 3. Section 4 describes state
of the art semantic search engines along with their
strengths and weaknesses. The design of Enticing is
presented in 5. Section 6 describes Enticing Query
Language. Section 7 discusses testing and evaluation
of the platform. In the end, a conclusion is given.

2. Indexing and searching inside search
engines

This section describes the problem of indexing and
searching in the context of search engines. First sub-
section defines basic terms and typical techniques used
within search engines. Afterwards a search engine
called MG4J is presented, as it is used internally within
Enticing.

Basic definitions
Since this project is a follow-up work of [1, 2], the
terminology will be mostly identical as it was defined
in [1] with some modifications and extensions.

Index The Oxford dictionary defines it as an alphabet-
ical list of names, subjects, etc. with reference
to the pages on which they are mentioned3.
In [1], they defined index as a structure allowing
a faster access to a certain piece of information
without the need to process all the data. This
definition suits our needs perfectly, therefore we
will follow it.

3https://www.lexico.com/en/definition/index

Inverted Index An inverted index over a collection
of documents contains, for each term of the col-
lection, the set of documents in which the term
appears and additional information such as the
number of occurrences of the term within each
document, and possibly their positions [3]. This
data structure is used inside search engines to
efficiently determine which documents contain
the specified words.

Query expansion Modern web search engines rely
on query expansion, an automatic or semi au-
tomatic mechanism that aims at rewriting the
user intent (i.e., a set of keywords, maybe with
additional context such as geographical location,
past search history, etc.) as a structured query
built upon a number of operators [4].

Tree based evaluation of the query Search queries can
be efficiently represented as trees. The leaves
represent keywords from the query and the inter-
mediary nodes represent operators. The search-
ing algorithm can then proceed in the bottom up
way as follows. First, all the leaves of the tree
are evaluated and the results are stored within
them. Then their parents are evaluated, combin-
ing results from their children. The execution
proceeds all the way to the root, which repre-
sents the whole query [1].

Semantic models of searching The semantics of the
search query is given by the semantic model.
The simplest one is the boolean model, where
only conjuctions, disjunctions, negations and
keywords are allowed. Unfortunately, this model
does not provide any information regarding the
fact how the document was matched by the
query. MG4J uses a semantic model called Min-
imal Interval Semantics. It uses intervals of
natural numbers that are incomparable towards
inclusion. Each interval is a witness of the satis-
fiability of the query, and defines a region of the
document that satisfies it [4].

Snippet If a query matched a document, the result
has to be presented to the user. One of the most
common forms of presenting search results are
snippets. A snippet is a part of a document that
matched given query, possibly extended with
some additional information given by the search-
ing algorithm.

MG4J – Managing Gigabytes for Java
This subsection describes MG4J, a free full-text search
engine for large documents written in Java [5]. It
is developed under the GNU Lesser General Public

License4 at the University degli Studi di Milano5.
MG4J has a query language with very expressive

set of operators allowing to build complex queries.
These operators are implemented using new very effi-
cient search algorithms [6]. It supports searching over
multiple indexes and combining the results. On top of
that, MG4J is open source, so it is possible to dive into
the source code when the answers cannot be found in
the documentation. Unfortunately, it has no support for
entities with attributes and relationships between them.
Nevertheless, the aforementioned properties make it a
very suitable backend for our semantic search engine.

3. Semantic enhancement of natural lan-
guages

This section explains the topic of semantic enhance-
ment. First it provides basic definitions. Then it de-
scribes how semantically enhanced documents are cre-
ated within KNOT.

Basic definitions
The key definition in semantic enhancement is Seman-
tic annotation. Semantic annotations are metadata
assigned to other data in order to increase their con-
text and semantics [1]. These annotations are usually
derived from unstructured content using Natural lan-
guage processing and afterwards they are encoded in
a structured format suitable for semantic search [7].

Semantic search over documents aims to find in-
formation that is not based just on the presence of
words, but also on their meaning. It is gradually estab-
lishing itself as the next generation search paradigm,
which can satisfy better a wider range of information
needs, as compared to traditional full-text search. In
the case of semantic search, what is being indexed is
typically a combination of words, formal knowledge
typically expressed in an ontology, and semantic an-
notations mentioning ontological concepts in the text
[7].

Corpora processing tools
Any search engine would be useless without large
enough amount of data for searching. This subsec-
tion briefly introduces the corpora processing pipeline6

which is used within KNOT to create semantically en-
hanced documents. These documents are then used in
Enticing. The input of this pipeline are html pages and
the output are tsv files, where each line represents a

4https://www.gnu.org/licenses/lgpl-3.0.en.html
5http://www.unimi.it/
6http://knot.fit.vutbr.cz/corpproc/corpproc en.html

single word in the document along with its metadata.
The pipeline consists of the following stages.

1. Verticalization – HTML pages are parsed into
tsv files.

2. Deduplication – Filters out duplicit pages and
paragraphs within them.

3. Tagging – Idenfies parts of speech.
4. Parsing – Syntax analysis.
5. SEC – Semantic enhancement.

4. State of the art solutions
This section covers three state of the art search en-
gines which support semantic search to a various ex-
tent along with their strengths and shortcomings.

Mimir
Mimir is a semantic search engine developed at the
The University of Sheffield. It was developed as a part
of the Gate infrastructure for language engineering7.
Using index federation and cloud-based deployment,
it can scale up to 150 millions documents. It also
supports hybrid queries that arbitrarily mix full-text,
structural, linguistic and semantic constraints [7]. It
internally combines different indexing technologies.
The full-text search is done using MG4J and a triple
store queried using SPARQL is then used for accessing
Linked Open Data resources.

Mimir is a very powerful engine, even too pow-
erful for our use case. Most of its functionality is
not necessary, therefore using it would be too heavy-
weight.

Sketch Engine
Sketch Engine is a tool for analyzing how languages
work. It analyses large text corpuses in order to find
out what is typical and what is rare for a given lan-
guage. It houses more than 500 corpora in more than
90 languages [8] and it supports searching in them. It
is an interesting piece of work that can be used for
studying languages, but it was not designed to be a
publicly available search engine.

Previous system at FIT BUT
One semantic search engine was developed within
KNOT. It’s original author was Jan Kouril8 and it was
extended by S. Panov in [1] and K. Gresova in [2]. Its
architecture was the following. There were two main
components, Webserver and IndexDeamon. IndexDea-
mon was able to index documents and query them.
Webserver provided user interface for the system.

7https://gate.ac.uk/
8https://www.fit.vut.cz/person/ikouril/

For querying the documents, a special package
Query along with a query language mg4j-eql was de-
veloped in [1]. The Query package was created so that
it could be used in various clients. It was later inte-
grated into the old webserver in [2]. K. Gresova also
made several changes to the webserver to make it more
flexible. However, the original code was not written in
a maintainable way and, as it typically happens with
software products, it’s quality got worse and worse
over time. And because of the maintainability issues,
it was very hard to extend its functionality or provide
bug fixes.

5. Design of the platform
This section covers the design of Enticing. It is a
distributed system consisting of several components.
The components and the relationships between them
are visualized in the Figure 1.

The system is designed to handle very large text
corpuses. The components for indexing and searching
are meant to be run in parallel on multiple machines,
each of them working with a piece of the corpus. Since
it is quite easy to split the set of documents into parts of
similar length, this design allows to scale up or down
very easily simply by adding or removing servers.

There is quite a lot of metadata available, but users
sometimes need just a part of it. The system allows
users to customize what metadata should be returned,
which can reduce the size of the result only to the
information that is really wanted.

Each of the components of the system will now be
described in more details.

Webserver
Webserver is the first and only component common
users will interact with. It is also the only one that is
meant to be publicly accessible. All requests should
pass through it before being forwarded further into
the system. It exposes an API that can be used by
any third-party service to submit a search query. It is
bundled with a single page JavaScript application that
serves as a GUI of the system.

Apart from being the entry point for queries, Web-
server’s responsibilities also include user management
and search settings management.

ConsoleClient
Sometimes, especially for research purposes and for
testing, it is useful to submit a query and collect all
the results into a file or to execute a group of queries
in a batch. ConsoleClient is a component that handles
this use case.

IndexServer
IndexServer is a component that handles a set of doc-
uments and exposes an API for querying them. This
API should be accessible only internally, that is from
the Webserver or the ConsoleClient, it is not meant to
be directly reachable for the users of the system.

Internally, the set of documents is divided into
collections. Each of these collections is handled con-
currently. The documents are queried using MG4J.

This component is meant to be deployed multi-
ple times on multiple machines to handle bigger text
corpuses.

IndexBuilder
This component is a command-line tool responsible
for preprocessing documents using MG4J and creat-
ing indexes that are later used by IndexServers. The
process of indexing is both time and resource consum-
ing, that’s why it is handled separately and not directly
from the IndexServers.

6. EQL – Enticing Query Language

EQL is a language which can be used to query seman-
tically enhanced documents on the Enticing platform.
The queries can be as simple as a few words, but also
very complex, containing logical operators, subqueries
over multiple indexes or constraints further limiting
the results.

Operators
The operators can be divided into four categories.

Basic operators
• Implicit and – A B – If no operator is specified,

and is chosen implicitly. That is all mentioned
words have to be in the document, in any order.

• Order – A < B – A should appear before B,
but they do not have to be next to each other.

• Sequence – "A B C" – A, B and C have to
appear in this order next to each other.

• And – A & B – Both A and B have to be in the
document, in any order.

• Or – A | B – At least one of A, B has to be in
the document.

• Not – !B – B should not be in the document.
• Parenthesis – (A | B) & C – Parenthesis

can be used to build more complex logic ex-
pressions.

• Proximity – A B ˜ 5 – A and B should ap-
pear at most 5 positions apart.

Figure 1. Components Components of the system

Index operators
To work with meta information, one has to specify
index for querying. That can be done using the index
operator.

• Index – index:A

This query will look for documents, where value A is
present at given index. For example, lemma:work
will match any document in which any word, whose
lemma is work, appears, e.g. works, working, worked,
etc.

It is also possible to ask more complex queries
such as index:A|B|C. Apart from another index
operator or entity operator, a query of any form can be
used.

• Attribute – person.name:A

When working with entities, it is possible to query
their attributes as well. The query above will return
documents with people whose name is A.

• Align – index1:A ˆ index2:B

The align operator allows to express multiple require-
ments over one word. For example, it is possible to
look for a noun, whose lemma is do. This query can
be written as pos:noun ˆ lemma:do.

Context constraints
The default context for searching is the whole docu-
ment. For more granular queries, it is possible to add
the following limitations to the end of the query.

• Paragraph – ctx:par – Limits the query to
one paragraph only.

• Sentence – ctx:sent – Limits the query to
one sentence only.

Global constraints
Sometimes it is necessary to specify a relationship
between multiple entities that can’t be expressed us-
ing the previous operators. One example might be
searching for documents talking about two artists in-
fluencing each other. A simple query for that would be
the following.

nertag:artist < lemma:influence
< nertag:artist

But there is a problem with this query. It might
return irrelevant snippets, because there is no require-
ment that the two artists should be different. This is
where the global constraints come into play. The global
constraint is a predicate which is separated from the
query by symbols &&. The constraint consists of one
or more equalities and inequalities connected using
logical operators and, or, not and parenthesis, if
necessary.

In order to use the global constraints, relevant parts
of the query have to be identified first.

• Assignment – x:=A – Assign an identifier to
a certain part of the query.

Afterwards, it is possible to write queries with global
constraints.

a:=nertag:artist < lemma:influence
< b:=nertag:artist
&& a.nerid != b.nerid

Searching algorithms
As mentioned earlier, MG4J has no support for en-
tities with attributes and relationships between them.
It also does not have support for identifiers. There-
fore, the query has to be rewritten before being passed
into MG4J and the results have to be post-processed.
This step computes which parts of the documents were
matched by which nodes in the Abstract Syntax Tree
(AST) of the query. Using this information, global
constraints can be evaluated. It can also be used to
provide very precise highlighting. Unfortunately the
computation is both time and space consuming. It
essentially requires us to re-implement the searching
functionality of MG4J on our own, which is not an
easy task. On the other hand, it gives us a chance to
create our own semantics for the query, which can be
different from the underlying technology.

Minimal-Interval Semantics used by MG4J can
significantly reduce the number of returned snippets
and it allows them to use very efficient searching al-
gorithms [4]. However, it has drawbacks. Imagine a
query about a place and a person. Now lets say that
there is a document containing three different people
and three places and the intervals between them are
overlapping. MG4J would return only one interval
connecting one person with one place. In Enticing,
we prefer to return all three combinations that occur,
even though they overlap. MG4J does not support that,
but it will at least return the document for us and we
can then perform the post-processing generating all
possible combinations. The con of our solution is that
the number of results can grow exponentially. To cope
with that, we decided to limit the number of snippets
per document.

7. Testing and evaluation
This section covers testing and evaluation of the plat-
form. Since the project is very big, multiple different
types of tests were used together to ensure its quality.
Each module has its own unit tests verifying its func-
tionality. Different modules are combined together

into components and integration tests verify the com-
munication between them.

A significant part of testing is centered around
EQL and its searching functionality. They form the
very core of the search engine and therefore their cor-
rectness is of the highest importance. EQL compiler
has a suite of tests verifying that the translation from
EQL to MG4J works as expected. Another suite of
EQL tests was created to ensure that semantic errors
are discovered before the query is executed. More
functional tests were added to verify that given a query
and a group of test documents, correct results are pro-
vided. These tests are done on multiple layers, from
the core EQL algorithms through IndexServers all the
way to the Webserver, to ensure that the results are not
malformed as they are post-processed.

Performance
Apart from the correctness itself, performance is very
important. Users expect search results to be delivered
fast and therefore the whole system has to be optimized
to satisfy that. In order to perform any optimizations,
measurements have to be taken first, to make sure that
the optimizations work as expected.

The current measurements at the time of writing
this paper are presented in the table 2. Please note
that the system is still being developed, so the results
presented here might not be aligned with the perfor-
mance you are experiencing when using Enticing. We
are currently working on optimizing the search per-
formance, so hopefully the system will be even faster
by the time you experiment with it. We measured
the duration of querying one IndexServer, as it is the
most important use case to optimize. Wanted amount
of snippets was 20. Tested IndexServer instance was
deployed on KNOT server knot01.fit.vutbr.cz. This
server has Intel Xeon E5-2630 2,3 GHz processor with
15MB cache and 6 cores. Total ram size is 65536
MB. IndexServer instance was handling 10 mg4j files,
which together had 2.9 GB and contained 24371 docu-
ments. We created a list of queries and then submitted
them 100 times, measuring the execution time of each
query. We then computed the average value, the de-
viation, min and max of the execution time for each
query. We started with simple single word queries,
then combined them together, also adding restrictions
later on. Contrary to what we expected, more complex
queries are not always significantly slower. The num-
ber of occurences of searched terms and their locations
play a significant role as well. For example, there are
only 1285 matches of the word water, but there are
more than 10000 entities of type person. Therefore
less documents have to be iterated when providing 20

results. You can also notice a significant slowdown in
the query water nertag:person nertag:location ctx:sent.
This happens because the context restrictions operators
are currently not very optimized. They will be our first
target in future optimizations.

8. Conclusions
The main topic of this paper was a search engine
for querying semantically enhanced documents. The
Knowledge Technology Research Group (KNOT)9 at
FIT BUT has a Natural language processing (NLP)
pipeline which can analyse documents written in nat-
ural languages and add additional meta information
to them. Such information can be syntactic, such as
lemma of the word or their position within sentences
and paragraphs, or semantic, such as entities like peo-
ple and places. The search engine should query the
documents efficiently while allowing to use all the
meta information in the queries.

The first section focused on the problem of in-
dexing and searching inside search engines. It also
described MG4J10, a search engine that is used inter-
nally in the resulting infrastructure. The following
section focused on semantic enhancement of natural
languages. The corpora processing pipeline11 used
within KNOT to create semantically enhanced docu-
ments was described. Afterwards the design of the
new search engine called Enticing was presented. It
is a distributed system, with each of its components
consisting of several modules with well-defined inter-
faces. Each component is designed to be deployed as
a separate process on its own server. Therefore the
system should be able handle most of exceptions in its
components without shutting down totally and at least
partial results should be presented to the user whenever
possible.

In order to query the semantic metadata, new query
language called EQL (Enticing Query Language) was
designed. This language is powerful enough to query
all the entities inside semantically enhanced docu-
ments but also simple to understand, so that users from
other domains can use it as well.

The system was built incrementally. First, basic
prototypes of all components were developed to better
understand the domain and gather more precise re-
quirements. Afterwards, the architecture was carefully
designed and all components were extended accord-
ingly. Some parts were rewritten multiple times until
their quality was sufficient. After the implementa-

9https://www.fit.vut.cz/research/group/knot/
10http://mg4j.di.unimi.it/
11http://knot.fit.vutbr.cz/corpproc/corpproc en.html

tion, the system was tested and deployed on KNOT
servers. The core was then further extended by adding
a monitoring infrastructure and maintenance system.
A follow-up work can extend the platform by adding
new types of IndexServers, for example backed by a
neural network, or by adding a native mobile client.

Acknowledgements
I’d like to thank my supervisor, Ing. Jaroslav Dytrych,
Ph.D., and Doc. RNDr. Pavel Smrž, Ph.D for their
professional help and guidance. I also want to thank
Ing. Jan Doležal for his guidance and support in the
design process. Last but not least, I’d like to thank my
parents for their neverending support.

References
[1] Panov Sergey. Indexing and searching seman-

tically annotated texts. Bachelor thesis, Brno
University of Technology, Faculty of Information
Technology, Brno, 2017.

[2] Grešová Katarı́na. Searching semantically anno-
tated texts. Bachelor thesis, Brno University of
Technology, Faculty of Information Technology,
Brno, 2018.

[3] Sebastiano Vigna. Quasi-succinct indices. In Pro-
ceedings of the 6th ACM International Conference
on Web Search and Data Mining, pages 83–92,
Rome, Italy, 2013. ACM.

[4] Paolo Boldi and Sebastiano Vigna. Efficient opti-
mally lazy algorithms for minimal-interval seman-
tics. In Theoretical Computer Science, pages 8–
25, Dipartimento di Informatica, Università degli
Studi di Milano, Italy, 2016.

[5] Paolo Boldi and Sebastiano Vigna. Mg4j: high-
performance text indexing for java. online, 2005.

[6] Paolo Boldi and Sebastiano Vigna. Mg4j (big)
The Manual. Available at http://mg4j.di.
unimi.it/man-big/manual.pdf.

[7] V. Tablan, K. Bontcheva, I. Roberts, and H. Cun-
ningham. Mı́mir: an open-source semantic search
framework for interactive information seeking and
discovery. Journal of Web Semantics, 2014.

[8] Adam Kilgarriff, Pavel Rychlý, Miloš Jakubı́ček,
et al. Sketchegine. online.

 http://mg4j.di.unimi.it/man-big/manual.pdf
 http://mg4j.di.unimi.it/man-big/manual.pdf

Table 2. Results of performance tests

EQL Query Average[ms] Deviation[ms] min[ms] max[ms]
water 711.4 65843.12 337 1823
nertag:person 155.4 2263.76 104 421
nertag:location 177.73 24321.48 93 835
water nertag:person 503.0 35445.24 355 1259
water nertag:person ctx:sent 423.15 8891.11 321 771
nertag:person nertag:location 130.24 1919.32 96 433
nertag:person nertag:location ctx:sent 287.09 2490.72 220 463
water nertag:person nertag:location 453.82 14603.47 331 1056
water nertag:person nertag:location ctx:sent 4317.23 16767.16 4071 4828
nertag:person nertag:person 119.28 1071.40 96 403
nertag:person nertag:person ctx:sent 124.48 828.09 100 330
a:=nertag:person b:=nertag:person 117.31 699.074 97 287
a:=nertag:person b:=nertag:person ctx:sent 130.61 667.64 104 247
a:=nertag:person b:=nertag:person && a.url != b.url 126.33 801.48 98 263
a:=nertag:person b:=nertag:person ctx:sent && a.url != b.url 353.91 10034.46 250 801

	Introduction
	Indexing and searching inside search engines
	Semantic enhancement of natural languages
	State of the art solutions
	Design of the platform
	EQL – Enticing Query Language
	Testing and evaluation
	Conclusions
	References

