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Abstract
Deep learning based medical data segmentation methods can provide excellent results already.
However, these results are obtained mostly thanks to the large training data sets. Obtaining the
sufficient amount of correct annotations might be problematic in the medical field. This paper
describes the problem of training medical segmentation models with limited annotations and
proposes solutions to address the issue.
We compare the baseline segmentation model group with two other model groups. These groups
use different means to battle the lack of data problem. First group is pretrained in unsupervised
manner and the second one uses human interaction in form of guidance clicks. We train 14 models
for each group on subsets with varying number of patients.
Segmentation model trained on small number of patients has better results when pretrained in
unsupervised manner on the whole trainig set with 70 patients. Better results are obtained with
the interactive method, where training on only two patients reaches Dice score 0.929 whereas the
preitrained model reaches 0.830 and the baseline model only 0.749.
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1. Introduction

Medical data analysis with use of deep learning is
an important field since the successful application of
its methods can lessen the workload for medical pro-
fessionals and can also generally lead to healthcare
quality improvement. Although the methods of med-
ical data segmentation have highly improved in the
past few years, the shortage of professionally created
annotations is still an issue.

This work focuses on the task of semantic segmen-

tation of the long bones in human computed tomog-
raphy (CT) scans, specifically on the possibilities of
using small amounts of annotated data while maintain-
ing satisfactory segmentation quality. Cases where no
annotated data are present for the particular segmen-
tation class are also considered and transfer learning
view is used as a part of the selected solution. The
main goal of this work is to examine ways of solving
these challenging use-cases, and to observe the be-
havior of the selected solutions on varying number of
training data rather than to compete with the quality of
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the state-of-the-art methods by tweaking the network
architecture.

Segmentation of medical data requires high level
of precision. This is why semi-automatic and more
traditional methods, such as thresholding or graph cut
[1], are still being used even with recent development
of deep learning methods. This can be partly because
of the lack of the training data for specific cases, partly
because the low error tolerance is a necessity while
dealing with real patients and high level of control over
the segmentation method is a must. Alternatively, the
classical methods can be used as an integrated part of
the deep learning method, such as described in paper
by Kodym et al. [2].

Segmentation models, even from different domains,
usually share the encoder-decoder architecture type,
as used in several other works [3, 4, 5]. In the med-
ical domain, the most widespread architecture is the
U-net [6] architecture. Authors of this model followed
the encoder-decoder trend in segmentation models and
developed an architecture that became a standard of
medical data segmentation. Which also helps to im-
prove the segmentation results is converting the whole
model to 3D with use of 3D convolutions as Çiçek et
al. have done in [7].

Apart from architecture development itself, some
authors focus on other means of raising the quality of
the segmentation results, for example transfer learning.
Authors of the Models Genesis [8] experimented with
transferring the knowledge obtained from image restau-
ration task to the task of segmentation (and other tasks
as well). The general model is trained to deal with
several different types of distortion. Authors claim
that this practise helps the model to learn general data
character and structure from unlabeled data, speeding
up the convergence of the segmentation training and
providing better segmentation results than randomly
initialized models.

As the automatic segmentation models can be sen-
sitive to domain changes and their accuracy can drop
in specific cases, several attempts to benefit from user
interaction have also been made [9, 10, 11]. In the
paper [11] for example Sakinis et al. use foreground
and background click maps as a part of the model in-
put to help the model with the right object selection.
This can help to battle small domain shifts and even
provide a mean to generalize the segmentation to previ-
ously unseen types of data, such as irregularly shaped
tumors.

We are using a variation of the earlier mentioned
U-net architecture as a baseline method for the task
of longitudinal bone segmentation in axial CT slices.

Apart from that, two extensions are selected and tested.
The first extension benefits from transfer learning prin-
ciples described by authors of Models Genesis [8]. The
model is pretrained on image restauration task without
needing any labels and then finetuned to the segmenta-
tion task. In the second extension, user interactions are
used to improve the segmentation quality similarly to
the work of Sakinis et al. [11]. This interactive model
uses user clicks for object or background specification.

All three models have been trained on several dif-
ferent subsets of data with varying number of patients
in each set. The smallest set only contains one pa-
tient. Three groups of models have been created, one
for each method. This benchmarking helps to show
the benefit of each method for different data amount
scenarios.

The main contribution of this paper lies in the com-
parison of the selected models and examination of
their behavior when being trained with variably sized
training subsets. Our experiments suggest that using
unlabeled data for pretraining can be beneficial to some
extent. Best improvement was reached in the scenario
with one labeled patient. This scenario best shows the
benefit of using unsupervised pretraining, however the
final reached Dice score is quite low. More research
could be done with bigger amount of unlabeled pre-
training data to prove that this method can be used
in practice. Alternatively, this method can be used
only as a preprocessing for semi-automatic methods,
serving as a means of time reduction for human ex-
perts. Experiments with interactive segmentation yield
promising results even in the one patient scenario, with
minimal number of interaction. In this use-case, seg-
mentation with only one click in each axial slice yields
much better results than the baseline method. Inter-
active training with two patients reaches Dice score
0.929, which is considerably high value for such a
small training set.

2. Selected solutions to CT segmenta-
tion

As already mentioned in the previous section, lack
of data and, particularly, the expert-annotated data is
one of the problems in the field of medical image seg-
mentation. In this work, we set one baseline method
inspired by the current medical segmentation models
standards and then compare it to another two experi-
mental approaches. These two approaches are based
on unsupervised transfer learning and user interaction.
The proposed model scheme and its inputs are shown
in Figure 1.



Figure 1. The U-net type model architecture with
input and output patch. Each yellow block contains
several layers consisting of convolution and ReLU.
The orange arrows represent concatenation of the left
block output with the right block input. Model input
consists of only 1 channel of data for the baseline and
the pretrained solutions. For the interactive solution,
two other input channels are added (yellow color and
red color in the input patch).

2.1 The baseline and the training process
The network architecture itself remains unchanged
from 2D U-net [6] in the terms of level count and
number of convolution filters in each convolution layer.
Each covolution layer is followed by ReLU or Sigmoid
(last layer) nonlinearity. In the training process, the
network input is a 96×96 2D patch randomly cut out
of the CT data slice and corresponding groundtruth
segmentation slice is used as a loss function input.
Slices in each minibatch are chosen by random gener-
ator without repetition and the minibatch size is set to
32 slices. The generator is reset only after all the data
has been used. We use cross entropy loss function and
the Adam optimizer with learning step set to 1e-5.

We do not use the concept of epochal training be-
cause different models have been trained on different
number of patients which would lead to unequally long
epochs. Rather than that, we use a number of itera-
tions for comparing the training processes of different
models.

We are aware of the possibility of using regulariza-
tion techniques to avoid problems with overfitting, but
in this work we chose not to use them just yet, because
we wanted to see the unaltered impact of different
selected approaches.

The baseline model was proposed as a representa-
tion of a basic version of modern deep learning seg-
mentational standard and serves as a reference point
for comparing the efficiency of the two solutions for
battling the lack of training data problem. The training
process remains the same for the other two model ver-
sions if not said otherwise in the next two subsections.

2.2 Unsupervised pretraining
Inspired by the authors of Models Genesis [8], we use
transfer learning as a means to improve the segmen-
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Figure 2. Three different training patches for the
image restauration task. Inpainting (2a), Outpainting +
intensity transformation (2b) and Inpainting and pixel
shuffling (2c).

tation quality of a model trained on small amount of
labeled data. At first, the model is trained on a sec-
ondary task of image restauration. The distortion meth-
ods are the same as in the original paper [8], specifi-
cally in- and out-painting, nonlinear intensity changes
and local pixel shuffling. We use pregenerated pixel-
shuffled data instead of using online generation, which
we chose to do to reduce time consumption of the
training process. The input of the model is a distorted
patch and original patch is used as a label for simple L1
loss function. Please note that in this way the training
process does not need any expert created annotations
and is completely unsupervised. After the pretraining
process, model can be trained on the segmentation task
as described in the baseline subsection. Illustration of
the restauration model data is shown in the Figure 2.

The benefit of this solution lies in the possibility
of training on a big amount of unlabeled data, which
should help the model learn the basic data structure
resulting in increasing the segmentation quality even
if trained only on a smaller amount of labeled data.

2.3 Adding user interaction
Allowing the possibility of user interaction in the fi-
nal segmentation application, we can consider this ap-
proach to be another way to battle the lack of data issue.
Same as Sakinis et al. [11], we use background and
foreground click to specify the desired object within
the input slice. We use the same method for creating
the click maps as in the original paper which is as fol-
lows. Two click maps are created, one for object and
one for background and both are then concatenated
with the input data slice, creating a model input with
3 channels. When creating the clicks maps, pixels of
a value 1 are placed to the desired click positions and
whole map is then smoothed with Gaussian filter and
normalized to range 〈0,1〉.

In each training iteration, the model works in pre-
diction mode at first and several user clicks are gen-
erated from the groundtruth data as well as from the



previous interaction output. First click is placed in the
innermost position of the groundtruth object area and
following clicks are then placed in the biggest erro-
neous areas. Final number of interactions is randomly
set to t ∈ 〈1,5〉 for each slice in the minibatch. Unlike
the original paper, we did not use multilabel data for
the training. Because of that, we randomly convert
the groundtruth to all-background and in such a case
we only provide the background clicks. We hope that
this will force the model to pay more attention to user
clicks.

This solution was originally proposed to create
more general model which should be able to segment
previously unseen data, as suggested by the authors.
Yielding good results, we investigate to what degree
can this solution help to improve the results of a seg-
mentation trained on only small amount of training
data.

(a) (b) (c)

Figure 3. Example of the fibula bone and the
surrounding tissue. 3D visualisation from the lateral
view (3a), sagittal slice (3b) and axial slice (3c).

2.4 Dataset
All the models have been trained on a fibula subset of a
fairly large dataset of human body CT scans provided
by the TESCAN 3Dim company. The expert groun-
truth segmentation was provided as well. This subset
consists of CT scans of fibula bone and its surround-
ings (Figure 3) from 95 patients. Up to 70 patients
data was used for the training, other 9 patients data
was used for validation during the training and another
10 patients data was used for evaluation of the final
models. Note that the evaluation data was not used dur-
ing the training process nor as the checkpoint selection
criteria.

The data in Hounsfield units was clipped to range
〈−1024,3000〉 and then scaled within the range of
〈0,1〉. Otherwise no changes or augmentations were
done to this data.

3. Experiments with varying dataset
sizes

For the best demonstration of the impact of each of the
selected solutions, we created three groups of models,
one for each method and one for the baseline. Each
group consists of 14 models which uses the following
numbers of patients for the training process: 1, 2, 3,
4, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70. The naming
convention for the models in this work is as follows.
Three different names are used (Seg, SegPretrained and
SegInter) for defining the models group. The following
number identifies the number of patients used for the
model training. Model named Seg1, for example, is a
model that was trained on one patient and belongs to
the baseline group.

The Dice score on validation data is being recorded
during the training process. This metric is defined by
Equation 1, where Gti is the ground truth segmentation
and Pi is the prediction for the i-th pixel. The model
checkpoint with the best validation Dice score is al-
ways saved and is considered to be the final model
after the last iteration ends. All models groups were
trained for 65 000 iterations of the segmentation train-
ing process.

Dice =
2∑

N
i Gti ·Pi

∑
N
i Gt2

i +∑
N
i P2

i
(1)

3.1 The baseline models
One group of the models has been trained with the
baseline method for 65 000 iterations. The graph of
convergence (Fig. 4a) suggests that further Dice score
improvement is possible even after the 65 000 itera-
tions. The hard limit of 65 000 iterations has been set
due to the computing grid time limits. Even though
there is a possibility of a further improvement, we
believe that models trained this way are sufficient to
illustrate the results of our experiments. As expected,
the models with fewer training patients reach much
lower Dice score than the model trained on the maxi-
mum of 70 patients. It is also possible to observe the
trend of decreasing impact of adding more data with
higher patients counts.

3.2 The secondary task of image restauration
The image restauration task itself is an interesting ex-
periment. The restauration model was trained for 43
000 (checkpoint 1) and 104 000 (checkpoint 2) it-
erations on the 70 patients data. Both checkpoints
were compared and it is noticeable that the second
checkpoint model is surprisingly good in restoring the
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Figure 4. The comparison of the training process of the different models in the three groups. The graphs shows
the development of the best Dice score reached on the validation data during the training process.

(a) (b)

(c) (d)

Figure 5. The secondary task of image restauration.
Distorted input (5a), original lateral slice (5b),
restauration model output after 43 000 iterations (5c)
and after 104 000 iterations (5d).

bone details (Figure 5d). After the pretraining, SegPre-
trained models are trained the same way as the baseline
group.

3.3 Interactive training process
As mentioned above, the interactive training process
was implemented as in the work of Sakinis et al. [11].
However, there might be some changes needed in
the future. The simulated interaction training process
should mimic the way an actual user would click to im-
prove the segmentation results, but in cases where the
model reaches almost perfect results (mostly in later
iterations), the simulated clicks degrade to clicking on

very small areas of only few pixels. It is most likely
that a real user would not place any guidance clicks
on such areas and training the model to expect such
a behavior might be inefficient. During the training
process, there is maximum of 5 interactions for the
training data, but only one click is used in the case of
validation data and also during the evaluation of the
final model.

4. Evaluation
For each model, the checkpoint with the best evalua-
tion Dice score is considered to be the final one. Each
of the final models in all the three groups has been
tested on the evaluation data. The average Dice score
for chosen models is shown in the Table 1.

Please note that there is always at least one user
click present when evaluation the interactive model,
which gives it a major advantage in comparison to
the baseline. This is not considered a problem for the
model comparison as we are researching the benefit of
adding the user interaction.

4.1 Testing the final models
The numerical results on the testing data suggest that
there is certain benefit in using either the unsupervised
pretraining or the interactive approach. The most vis-
ible difference is, as expected, between the models
with fewer number of training patients. In the case
of the pretrained models, this is also caused by the
fact that the difference between the pretraining data
and the training data amount is increasing with the
decreasing number of training patients, as there is only
70 patients data used for the pretraining iteself. The
first noticeable thing about the training process is the



Table 1. Table of average dice reached by some of the
models in the three groups (Seg, SegPretrained,
SegInter) on the testing data. Patients column
determines the number of training patients for
particular model in the group.

Patients Seg SegPretrained SegInter

1 0.348 0.392 0.588
2 0.749 0.830 0.929
3 0.795 0.855 0.949
5 0.819 0.858 0.943
10 0.831 0.904 0.948
30 0.974 0.977 0.977
70 0.981 0.984 0.983

speed up of the models convergence (Figure 4c). It
seems that pretrained models reach higher Dice score
on the validation data than the baseline models, espe-
cially in the scenarios with smaller amount of labeled
data. The convergence speed up might bias the eval-
uation of the final model but although the baseline
method might still improve a little in case of longer op-
timization, the trend is clear. Pretraining the model on
larger unannotated data, possibly with adding whole
human body data, would be an interesting extension to
this experiment and might be examined in the future.
The interactive approach yields slightly better results,
which is most likely thanks to better localization of the
segmented object, as described in the next subsection.

4.2 The benefits and the limitations of inter-
active training with one class

The visual examination of the outputs of different mod-
els reveals that interactive training helps the model
with locating the correct object, which is shown in
Figure 6. Even though it improves results of the model
trained on the one patient data, it is apparent that model
is still relying on the known bone shape rather than on
the user clicks, at least to some extent. In some cases,
clicking on the false positive areas does not help the
model ignore them. It is most likely that the model just
learned to either use or not use the filters trained to do
the particular bone segmentation and it would probably
require training on a mixed bone dataset and/or dataset
with multiple classes to improve the utilization of the
filters.

5. Conclusions
We compared the three possible solutions to bode seg-
mentation in CT data with respect to the lack of data
problem. The baseline solution was a rather traditional
approach to the medical data segmentation, using the

Figure 6. Comparison of SegInter1 and Seg1 models
output. In this case, the interactive model (orange)
trained on just one patient has much better result than
the baseline (blue) model. Seg1 completely fails to
identify the correct bone. (The ground truth
segmentation is delineated with red color.)

unpretrained U-net type architecture with training pairs
consisting of 2D input patch and the corresponding
ground truth segmentation patch. The two other so-
lutions were chosen to battle the problem of the lack
of expert-created annotation in the medical field. The
first solution uses the unsupervised pretraining on a
secondary task of image restauration. The second solu-
tion adds the possibility of a user interaction in form of
click maps. We trained three groups of models, one for
each solution. Each group consisted of 14 models with
varying number of training patients, to illustrate the
efficiency of each solution. The results on the testing
data suggests that both of the solutions provide certain
benefit.

The best improvement was between the model
Seg1 and SegInter1. Both models were trained only on
one training patient, but the interactive model test Dice
score was 0.24 better than the baseline model. The in-
teractive model trained on two patients already yields
promising results with test Dice score 0.929. This
was achieved while using only one user interaction per
slice, which could be later replaced by drawing only
one line in the lateral view.

Both of the selected solutions provide some degree
of improvement to the lack of data problem. The use
of the interactive approach could, once implemented,
lessen the workload for medical experts by being the



mean to reducing the necessary amount of training
data. For data with a complexity of long bones such as
fibula, which has both left and right variant, we only
need to create manual segmentation for two bones (left
and right) to obtain relatively good results. This can
provide a significant boost to the creation of segmenta-
tion dataset for new types of data.

Even though we already have some promising re-
sults, the final method should include some improve-
ments, such as using regularization methods, replac-
ing the loss function with Diceloss or converting the
whole model to 3D. The immediate future work will,
however, lie mostly in the improving the interactive
solution or combining both of the solutions to see if
this brings some improvement. One of the possible
improvements of the interactive model is adding the
model output from the previous iteration/interaction as
another channel to the next model input.
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