BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Infrastructure for Testing and Deployment of the
Real-Time Localization Platform

Michal Ormos*

Abstract

o Generate and Gather DATA from generator
e Timeout for RTLS server to process all data
e Gather DATA from websocket

e Compare values and calculate RMSE error

Fast development and deployment of the software are the new phenomena of the era. It is not
different in the field of real-time localization systems. In our global world where the global positioning
system (GPS) is the everyday utility, there is a necessity of localizing under the roof where the GPS
cannot access. Here come the local position systems based on Ultra Wideband, which bring the
ultimate precision. This work solves the problem of fast delivery of the software responsible for the
real-time localization systems. It produces a case study on how to develop, test, and deploy this
system in the continuous integration and delivery environment with the help of DevOps principles.
This requires introducing the new techniques and methods for how to validate and test the precision
of these systems. With these improvements, we can deliver this type of software faster by reducing
the time needed for testing and validate software as it is developed. Also, we can guarantee and

demonstrate it's quality across versions easier.

Keywords: RTLS systems — UWB — CI/CD — Indoor Localization

Supplementary Material: N/A

*xormos00@stud.fit.vutbr.cz / mi.ormos@gmail.com, Faculty of Information Technology, Brno University of Technology

In recent years I have been focusing my attention on
indoor localization systems and products for solving
the problem of indoor asset localization. I am part of
the team developing the real-time localization systems
(RTLS), and I was not always satisfied with how the
software part of this system was tested and delivered.
Recently, I started to think about how to improve this
process with conventional testing methods and also
anew developed methods only for this type of software.
With the help of the crucial test-suite for the RTLS
system, we can deliver the new features faster and
more securely than before.

A real-time location system, as the name charac-
terizes are systems requiring a zero-delay response to

their inputs. RTLS system is a system based on famil-
iar software architecture with a database for storing
the data, back-end for serving the data, and front-end
for presenting the data. However, in the heart of every
RTLS system is location algorithm. At input of this
algorithm are thousands of data streams from location
hardware. Streams of this data, in raw Ultra Wide-
band (UWB) patterns, goes through the entire system.
Data are parsed, calculated, optimized and shown in
an understandable format. This data can be used for
example in logistic applications, navigation and asset
tracking. Guarantee that this data will be calculated as
fast as possible in the correct way is crucial. As this
system is growing and optimizing, we have to ensure
that this will be preserved across the new releases.

http://excel.fit.vutbr.cz
mailto:xormos00@stud.fit.vutbr.cz
mailto:mi.ormos@gmail.com

Indoor localization based on UWB is quite a new
concept in early development and deployment in the
industry [1, 2, 3]. However, testing and validating the
software products is old as software development itself.
In half of the problems, we can easily apply conven-
tional tools with little adjustments. However, the other
half requires new methods and the dose of creativity.
The ideas of this infrastructure come from the DevOps
principles [4, 5]. It is more the right philosophy than
the right tool. It is combination of the word’s develop-
ment and operations. DevOps assimilates development
and operations teams to improve the collaboration pro-
cess. A DevOps Engineer will work with IT developers
to facilitate better coordination among operations, de-
velopment, and testing functions by automating the
integration and deployment processes. Continuous
integration and continuous delivery (CI/CD) is often
referred to as pillars of successful DevOps [0, 5]. To
establish and optimize the CI/CD development model
and receive the benefits, companies need to build an
active pipeline to automate their build, integration, and
testing processes.

The second half of the problem is coping with the
difficulty of how to abstract this system from their hard-
ware components. As we want to test fast, remotely,
and in a stable environment, we have to abstract hard-
ware in a software manner. All RTLS systems are
dependent on devices which are transmitting the sig-
nal as RTLS Tags or merely mobile devices as well
as devices receiving the signal, called RTLS Anchors
[1, 7]. These devices record the signal representation
of the localization data where the RTLS software then
transforms this data to Cartesian coordinates system
understandable by everybody. The unique part of this
work will be to abstract this hardware credible so we
can test the software without it as we have it.

The outcome of this work is test suite, which ac-
celerates the delivery of the new version of the RTLS
system and ensure safer and more secure development
with confidence in the delivery process.

2.1 Indoor Localization

A local positioning system (LPS) is a navigation sys-
tem that provides location information anywhere within
the coverage of the network in all conditions. If there
is an unobstructed line of sight to three or more signal-
ing devices of which the exact position on the place
is known. A particular type of LPS is the real-time
locating system (RTLS), which also allows real-time
tracking of an object or a person in an enclosed area
such as a buildings and factories [8, 9].

Ultra Wideband (UWB or ultraband) is any radio
technology that has bandwidth exceeding 500 MHz or
20 percent of the arithmetic center frequency, whichever
is lower. UWB is a carrierless communication scheme.
The early applications of UWB technology were pri-
marily related to a radar. A UWB-based locating sys-
tem is very much like any other RTLS except that it
uses UWB signals [4].

2.2 CI/CD Pipeline

A CI/CD pipeline helps you automate steps in your
software delivery process, such as initiating code builds,
running automated tests and deploying to a staging or
production environment. Automated pipelines elimi-
nate manual errors, provide standardized development
feedback loops and enable fast product iterations [10].

2.3 Implementation

Software testing is the most frequently used method
for verifying and validating the quality of the software.
Testing is the method of executing a program or sys-
tem to detect faults. It is a significant activity of the
software development life cycle. It helps in developing
the confidence of a developer that a program does what
it is intended to do.

RTLS system consists of hardware and software parts.
In this test-suite, we only aim for the software parts
and omit the hardware parts. But as the software is
dependent on the hardware inputs, we will create the
hardware abstraction for software testing. This will
make testing and development faster and more easygo-
ing.

RTLS system software consist of RTLS Manager
application which is communicating with the hardware
and is parsing the input data. RTLS Server application
for calculating the positions and RTLS Sensmap for
displaying the localization data. This all is back-up
with the database.

The next section deals with the individual parts of
the test-suite as we will call our final pipeline contain-
ing all test cases.

3.1 REST Tests

Many third party applications are connecting to the
RTLS system and are fetching the data. The most
convenient method to fetch this data is WebSockets
and Open REST APL. In this section, we aim for the
REST API. This API consists of many requests for
getting the data from the database. The test-suite aims
for all these calls (GET, POST, PUT and DELETE). It

Restrictions C)
test/rest-tests js

G148ms B8 v4 X4

o should get restrictions and configruations should equal length 16 24ms
o should create new anchor for restriction test 56ms
° should create new anchor slave for restriction test 40ms

9 should add new restriction Oms

AssertionError: expected 500 to be 200

° should get newly created restriction Oms
TypeError: Cannot read property 'should’ of undefined

° should add new incorrect restriction Oms
AssertionError: expected 500 to be 400

° should add new incorrect restriction Oms

AssertionError: expected 200 to be 400

o should delete newly created anchors with its restriction 28ms

Figure 1. Example of an invalid test from the REST
Tests section of our test-suite pipeline. Individual test
cases are self-explaining and conditions are described.

tests the positive and negative results of these requests.

By these tests, we can be sure the RTLS system always
responds to the API call as it was designed to. The
part of testing WebSockets will be mentioned in the
next sections.

3.2 Syntax Checkers

RTLS systems usually have many contributors within
the team. DevOps principles emphasize that the same
tools and the same principles have to be used across
the team to guarantee the quality and validity of the

software. By this principle, we introduce the linters.

Lint, or a linter, is a tool that analyzes source code
to flag programming errors, bugs, stylistic errors and
suspicious constructs. The team settles on the shared
rules for writing the source code and these rules will
be forced in the pipeline. If the developer do not obey
this rules, the CI/CD pipeline will reject his commit.

3.3 Unit Tests
Unit tests are the first level of the testing process. They

are validating the individual parts of every module.

The unit test is written in a white box method, where
the developer writes the tests based on information
gathered from the source code. From this point the
test-suite will be in a black-box method where the
tests are written only with the specification of what the
software should do and without the information from
the source code.

3.4 Performance Tests

An essential part of our test-suite will also be to find
out where are the performance limits of the software
implementation depending on the hardware organiza-
tions. The limitation of hardware parts can be easily
calculated by their design and theoretical limits of the
UWRB. Nevertheless, as always, the software is usually
built together with many third-party applications and
running on different operating system distributions, so
a real performance test under the load has to be per-
formed. Our performance tests will be included within
the REST Tests as well as our Report generator tests.

3.5 pcap Player

This is the first unique test case built for the RTLS sys-
tem. As RTLS systems are already built and deployed
in the installations around the globe, we can use this
in our benefit. In the first way of application testing
we take the network recordings of the real application.
Then we eliminate the packets that are not connected
to the localization itself. After that, we replay this
recording to the RTLS system.

But before that, we need to take the original system
database and settings, and import them to the system
where we are replaying. Thereby we can replay the
same scenario to the system again and again. By this
method we can ensure that the system works the same
across the distribution and we can easily tune the sys-
tem remotely.

3.6 Report Generator

In the pcap Player, we were limited to the same pay-
load which we could send to the RTLS system. In
this part, we create the generator of our unique pay-
load. This will give us the benefit to create our own
scenarios. Hereafter we mention RLTS Tags as tags
and RTLS Anchors as anchors.

Tags are sending the signal to the environment and
Anchors are receiving them. Tags are dynamic devices
in the movement and Anchors are static devices with
a predefined position. The most important part of
Anchors is the synchronization between them. The
RTLS system is receiving the RTLS Blink signal from
Anchors about the tag signal time of flight from Tag
to the Anchor, and also the RTLS Sync signal about
the synchronization between the Anchors. By learning
how this Blinks and Syncs are created and successfully
generating them we can create authentic RTLS payload
generator.

To have full control of creating UWB payload by
the software we can now create random scenarios that
suit our purpose. Moreover, most localization errors
originate in synchronization inaccuracies. By that we

Main test o
test/test_controller js

®1047s EH6 6

o Generate and Gather DATA from generator 10ms
o Timeout for RTLS server to process all data 10.2s
o Gather DATA from websocket 6ms
o Compare values and calculate RMSE error 9ms
o Compare values and calculate MAPE error 14ms
o Print graphs ems

Figure 2. Example of a valid report generator test in
our test-suite. Passing on all items, which are
self-explaining.

mean that we can put intended errors to our synchro-
nization data on purpose. Thereby we can observe how
the system and his filters cope with the errors and use
some statistical methods as RMSE or MAPE to fully
validate this scenarios.

3.7 CI/CD integration

To make this pipeline work, the final step is to put
it to the system code repository where the project is
developed and ensure this pipeline will run on every
significant change of the code in the repository system
to preserve system quality and validity. We decided
to use the GitLab repository system, where the codes
are already stored. GitLab offers CI/CD built in every
repository based on GitLab runners, an open-source
project that is used to run your jobs and send the results
back to GitLab. It allows you to set different scenarios
when the test should run, as for example ours at every
commit or every midnight.

In this short evaluation, we introduce the final output
of the pipeline and introduce a few methods of how can
we validate it. In REST Tests, Unit Tests and Syntax
Checker we are validating results pretty straightfor-
wardly. We will specify limits and values when the
test passes or fails.

This was already shown in Figure 1 and Figure
2. We set conditions in which individual tests success
or fail, and the output of our test pipeline results in
these conditions passing or failing based on data they
received.

But this is not so straightforward in pcap Player
and Report Generator. In Figure 3 we can see the
output of the report generator as we plot the data to
the plan. The orange line representing the data gener-
ated by the report generator. This data are transformed

into data similar to UWB traffic, as Anchors would
generate them and passed to the RTLS software on
its input. The green line represents this UWB traffic
passed through RTLS system and positions are calcu-
lated. By this simple demonstration, we can assume
our report generator is working as we design to. This
is suitable for manual validation but unacceptable by
pipeline.

One way we can address this is to use statistical
methods as Root-mean-square deviation (RMSE equa-
tion 1) and Mean absolute percentage error (MAPE
equation 2) and calculate the deviation of points gen-
erated compared to points gathered as shown in the
Figure 4. Variable ¥ in both equations represents pre-
dicted values, variable y, observed value. Variable n
in both equations means number of observations.

1 n
RMSE = [~} (i =»)? (M
=1
100% - | 3; — i
MAPE = —2) |52 @)
o= i

Calculated MAPE and RMSE of our evaluation
case can be seen in Table 1. Here we can see devi-
ation of x-axis ans y-axis respectively. Deviation is
calculated between the every pair of points as shown
in Figure 4. Orange points are from report generator
and greens points are from RTLS system localization
output.

Values
Method x-axis y-axis
MAPE 2.57% 1.05%

RMSE 6.12801 1.41575

Table 1. Localization accuracy.

By this approach, we can determine the boundaries
of deviation where the localization is acceptable and
when unacceptable.

We introduce an indoor localization system based on
the UWB. We create test-suite based on CI/CD and De-
vOps principles. This test-suite is specially designed
for the RTLS systems. It consists of commercially
used tools as well as our proprietary tools designed
and created for testing RTLS systems without the ne-
cessity of real hardware components.

By applying this pipeline, we reduce delivery time
of the new RTLS system version. As this systems are
delicate and their real-time principles are crucial for

v
LA SEEL
= i [] 6.947m OIDEEDDUDDOUJ27
. csoom B e
... K
E rd
. = . o L
. . ° °
ls] * ®
.]
) . . .
. ° — ®
-
[®
K .
B hd . > " N . b -
DrW (o=
at -
e 'I'
..... > ‘
_ 2 L g
. o . .
.
.
- L]
I 2 B » .
[. \.\. Py .
|
1 “—\
I > o >\ . ®
‘II . * P,]
o]
o+
. 4 * >
+ * o },. ® ° o &
Q' - 0xDB0000D000S

0xDBE000000003

Figure 3. The demonstrative representation of the report generator. The original trajectory from the report
generator (orange) with output trajectory from RTLS system (green). Localization is never a straight line due to
many approximation filters algorithms of RTLS system use. The localization movement starts from the top right
corner and going from side to side until finishing in the bottom right corner.

Xy~

e

Figure 4. Example of how we use RMSE and MAPE
for automatic pipeline validation for deviation in both
axis of localization.

logistic and business applications, we can now deliver
this software more securely and with validation that
everything works as it should.

This paper is a case study of RTLS systems and
describes how to deliver them quickly and safely. It
analyzes this new rising technology and necessity to
introduce the way it can develop and deliver with con-
fidence.

This pipeline can be easily adjusted for different
RTLS systems in the future. But for this particular
UWB technology it could for the future include of
more statistical metrics for validation, as well as front-

end test cases for even faster CI/CD process.

Acknowledgements

I would like to thank my supervisor Ing. Vladimir
Vesely Ph.D., who helped me by leading this thesis
through the academic environment. I also want to
express my thanks to employees of Sewio Networks
s.r.0, who helped me with their knowledge about the
RTLS system I worked on, and allow me to create a
thesis on that exciting and rising topic.

References

[1] Len Bass. An evaluation of indoor location deter-
mination technologies. IEEE Software, 35(1):8—
10, 2018.

[2] Fouzia Boukour Elbahhar and Atika Rivenq. New
Approach of Indoor and Outdoor Localization
Systems. InTech, 1 edition, 2012.

[3] N. Oster F. Saglietti and F. Pinte. White and
grey-box verification and validation approaches
for safety- and security-critical software systems.
Information Security Technical Report, 13:10-16,
02 2008.

[4]

[5]

[6]

[8]

[9]
[10]

L. Bass. The software architect and devops. [EEE
Software, 35(1):8-10, January 2018.

Joost Evertse. Mastering GitLab 12: Implement
DevOps culture and repository management so-
lutions. Packt Publishing, 1 edition, 2019.

Adam Debbiche, Mikael Dienér, and Richard
Berntsson Svensson. Challenges when adopting
continuous integration:: A case study. volume
8892, pages 17-32. Springer, Cham, 2014.

Mengda Wang, Bing Xue, Wei Wang, and Jun-
jie Yang. The design of multi-user indoor uwb
localization system. In 2017 2nd International
Conference on Frontiers of Sensors Technologies
(ICFST), volume 2017-, pages 322-326. IEEE,
2017.

Johan Hjelm Krzysztof W. Kolodziej. Local Po-
sitioning Systems LBS Applications and Services.
Taylor Francis Group, LLC, 1 edition, 2006.

Sewio public documentation. online, 2019.

Manish Virmani. Understanding devops bridg-
ing the gap from continuous integration to con-
tinuous delivery. pages 78-82, 2015.

	Introduction
	Background
	Implementation
	Evaluation
	Conclusions
	References

